Fitting a volatility model on indices
Today a quant posed me a question:
If I had a sorted timeseries, how would I know if it was ordered correctly? What if it's in reverse?
After having an interesting conversation about how I would problem-solve the issue, he infomed me that a straightforward way was to fit a GARCH model, and that the model fit would be much higher if the timeseries was sorted in the right direction. While I wasn't quite sure of the econometric underpinnings of the solution, its not difficult to explore the idea.
In a previous post, we tried using the Google stock, and in this post we will try using an index, as per his suggestion. In this post, I've downloaded the following data from Ken French's data library
- 10 US industry indices.
- Fama-French 5 factors.
Although I could have used Yahoo/Google/Quandl/etc., I decided that for full transparency, the Ken French datasets are basically for academic use and are very robust datasets. Instead of using the SPY which is really an S&P500 ETF, I've used the Market Returns data as the market index.
Importing all necessary modules¶
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn
import os
import pandas_datareader.data as web
from pandas_datareader.famafrench import get_available_datasets
import datetime
from arch import arch_model
from statsmodels.tsa.stattools import acf, pacf
Data preparation¶
Reading the index timeseries¶
datasets = get_available_datasets()
print('No. of datasets:{0}'.format(len(datasets)))
# datasets #comment out if you want to see all the datasets
No. of datasets:286
Reading industry indices (monthly/daily)¶
ls_10_industry = [dataset for dataset in datasets if '10' in dataset and 'Industry' in dataset]
print(ls_10_industry)
dict_industry_m = web.DataReader(ls_10_industry[0],'famafrench',start='1963-07-01',end='2018-11-01') # Taking [0] as extracting '10_Industry_Portfolios (Monthly)'
df_industry_m = dict_industry_m[0] # Extracting value-weighted
dict_industry_d = web.DataReader(ls_10_industry[2],'famafrench',start='1963-07-01',end='2018-11-01') # Taking [2] as extracting '10_Industry_Portfolios (Daily)'
df_industry_d = dict_industry_d[0] # Extracting value-weighted
['10_Industry_Portfolios', '10_Industry_Portfolios_Wout_Div', '10_Industry_Portfolios_daily']
Reading factor datasets (monthly/daily)¶
ls_5_factor = [dataset for dataset in datasets if 'Factors' in dataset and '5' in dataset]
print(ls_5_factor)
dict_factor_m = web.DataReader(ls_5_factor[0],'famafrench',start='1963-07-01',end='2018-11-01') # Taking [0] as extracting 5 factor (Monthly)
df_factor_m = dict_factor_m[0]
dict_industry_d = web.DataReader(ls_5_factor[1],'famafrench',start='1963-07-01',end='2018-11-01') # Taking [1] as extracting 5 factor (Daily)
df_factor_d = dict_industry_d[0]
['F-F_Research_Data_5_Factors_2x3', 'F-F_Research_Data_5_Factors_2x3_daily', 'Global_5_Factors', 'Global_5_Factors_Daily', 'Global_ex_US_5_Factors', 'Global_ex_US_5_Factors_Daily', 'Europe_5_Factors', 'Europe_5_Factors_Daily', 'Japan_5_Factors', 'Japan_5_Factors_Daily', 'Asia_Pacific_ex_Japan_5_Factors', 'Asia_Pacific_ex_Japan_5_Factors_Daily', 'North_America_5_Factors', 'North_America_5_Factors_Daily']
Plotting indices & factors¶
df_industry_d.plot(title='US industry index Returns (Daily)')
<matplotlib.axes._subplots.AxesSubplot at 0x298e6e8d7f0>
df_factor_d.head()
Mkt-RF | SMB | HML | RMW | CMA | RF | |
---|---|---|---|---|---|---|
Date | ||||||
1963-07-01 | -0.67 | 0.00 | -0.32 | -0.01 | 0.15 | 0.012 |
1963-07-02 | 0.79 | -0.27 | 0.27 | -0.07 | -0.19 | 0.012 |
1963-07-03 | 0.63 | -0.17 | -0.09 | 0.17 | -0.33 | 0.012 |
1963-07-05 | 0.40 | 0.08 | -0.28 | 0.08 | -0.33 | 0.012 |
1963-07-08 | -0.63 | 0.04 | -0.18 | -0.29 | 0.13 | 0.012 |
df_factor_d.plot(title='Factor Returns (Daily)')
<matplotlib.axes._subplots.AxesSubplot at 0x298e71590b8>
df_factor_d['MKT'] = df_factor_d['Mkt-RF'] + df_factor_d['RF']
ret = df_factor_d['MKT']
ret.plot(title='Market Returns')
<matplotlib.axes._subplots.AxesSubplot at 0x298e745ef60>
Econometrics¶
Fitting models on the market factor (daily)¶
Calculating ACF¶
ret_acf_1 = acf(ret)[1:32]
ret_acf_2 = [ret.autocorr(i) for i in range(1,32)]
test_df = pd.DataFrame([ret_acf_1, ret_acf_2]).T
test_df.columns = ['Pandas Autocorr', 'Statsmodels Autocorr']
test_df.index += 1
test_df.plot(kind='bar')
<matplotlib.axes._subplots.AxesSubplot at 0x298e76c51d0>
Fitting a GARCH model (Forward)¶
am = arch_model(ret)
res = am.fit(update_freq=10)
print(res.summary())
Iteration: 10, Func. Count: 76, Neg. LLF: 16722.656929069963 Optimization terminated successfully. (Exit mode 0) Current function value: 16722.5951086026 Iterations: 13 Function evaluations: 94 Gradient evaluations: 13 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: MKT R-squared: -0.001 Mean Model: Constant Mean Adj. R-squared: -0.001 Vol Model: GARCH Log-Likelihood: -16722.6 Distribution: Normal AIC: 33453.2 Method: Maximum Likelihood BIC: 33483.4 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:36 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0658 6.290e-03 10.463 1.273e-25 [5.348e-02,7.814e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 9.3880e-03 2.104e-03 4.462 8.124e-06 [5.264e-03,1.351e-02] alpha[1] 0.0917 1.140e-02 8.049 8.364e-16 [6.941e-02, 0.114] beta[1] 0.9005 1.144e-02 78.703 0.000 [ 0.878, 0.923] ============================================================================ Covariance estimator: robust
Fitting a GARCH model (Reverse)¶
ret_reverse = ret.iloc[::-1]
plt.plot(ret_reverse.values)
plt.title('Index Returns (Reversed)')
Text(0.5, 1.0, 'Index Returns (Reversed)')
ret_acf_1_rev = acf(ret_reverse)[1:32]
ret_acf_2_rev = [ret_reverse.autocorr(i) for i in range(1,32)]
test_df = pd.DataFrame([ret_acf_1_rev, ret_acf_2_rev]).T
test_df.columns = ['Pandas Autocorr', 'Statsmodels Autocorr']
test_df.index += 1
test_df.plot(kind='bar')
<matplotlib.axes._subplots.AxesSubplot at 0x298e7c5e160>
am_rev = arch_model(ret_reverse)
res_rev = am_rev.fit(update_freq=5)
print(res_rev.summary())
Iteration: 5, Func. Count: 40, Neg. LLF: 16684.236263530434 Iteration: 10, Func. Count: 75, Neg. LLF: 16674.60452658196 Optimization terminated successfully. (Exit mode 0) Current function value: 16674.586540367545 Iterations: 12 Function evaluations: 88 Gradient evaluations: 12 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: MKT R-squared: -0.001 Mean Model: Constant Mean Adj. R-squared: -0.001 Vol Model: GARCH Log-Likelihood: -16674.6 Distribution: Normal AIC: 33357.2 Method: Maximum Likelihood BIC: 33387.3 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:37 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0677 5.844e-03 11.592 4.543e-31 [5.628e-02,7.919e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 8.2528e-03 1.629e-03 5.066 4.065e-07 [5.060e-03,1.145e-02] alpha[1] 0.0963 7.864e-03 12.247 1.734e-34 [8.090e-02, 0.112] beta[1] 0.8976 8.147e-03 110.171 0.000 [ 0.882, 0.914] ============================================================================ Covariance estimator: robust
So both the forward and reverse timeseries have GARCH models that can be estimated. Thus, I'm not sure what that quant meant. Technically, whether a time series is reversed or not, its just a set of returns thus its not certain how the fit of a GARCH model would lead to one knowing whether it is reversed or not. All I can see is that it took more iterations for a reverse timeseries to converge. The other part is that perhaps the p-values for the reverse case are very small indicating that all the variables of the GARCH model are extremely significant?
Fitting a GARCH-GJR model (Forward)¶
am = arch_model(ret, p=1, o=1, q=1)
res = am.fit(update_freq=5, disp='off')
print(res.summary())
Constant Mean - GJR-GARCH Model Results ============================================================================== Dep. Variable: MKT R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GJR-GARCH Log-Likelihood: -16575.0 Distribution: Normal AIC: 33160.0 Method: Maximum Likelihood BIC: 33197.7 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13927 Time: 11:52:37 Df Model: 5 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0495 5.957e-03 8.309 9.636e-17 [3.783e-02,6.118e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 0.0111 2.414e-03 4.609 4.045e-06 [6.394e-03,1.586e-02] alpha[1] 0.0280 5.002e-03 5.604 2.089e-08 [1.823e-02,3.784e-02] gamma[1] 0.1080 1.482e-02 7.284 3.243e-13 [7.891e-02, 0.137] beta[1] 0.9050 1.094e-02 82.722 0.000 [ 0.884, 0.926] ============================================================================ Covariance estimator: robust
Fitting a GARCH-GJR model (Reverse)¶
am = arch_model(ret_reverse, p=1, o=1, q=1)
res = am.fit(update_freq=5, disp='off')
print(res.summary())
Constant Mean - GJR-GARCH Model Results ============================================================================== Dep. Variable: MKT R-squared: -0.001 Mean Model: Constant Mean Adj. R-squared: -0.001 Vol Model: GJR-GARCH Log-Likelihood: -16450.2 Distribution: Normal AIC: 32910.4 Method: Maximum Likelihood BIC: 32948.1 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13927 Time: 11:52:37 Df Model: 5 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0814 5.802e-03 14.030 1.016e-44 [7.003e-02,9.277e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 4.9258e-03 1.062e-03 4.638 3.526e-06 [2.844e-03,7.008e-03] alpha[1] 0.1363 9.517e-03 14.321 1.607e-46 [ 0.118, 0.155] gamma[1] -0.1236 8.157e-03 -15.153 7.285e-52 [ -0.140, -0.108] beta[1] 0.9255 6.722e-03 137.679 0.000 [ 0.912, 0.939] ============================================================================ Covariance estimator: robust
All factor returns with FORWARD & BACKWARD timeseries (daily).¶
for column in df_factor_d:
print('***Industry Name (Forward)***: {0}\n'.format(column))
am = arch_model(df_factor_d[column])
res = am.fit(update_freq=5)
print(res.summary())
print('***Industry Name (Reverse)***: {0}\n'.format(column))
am_rev = arch_model(df_factor_d[column][::-1]) # reverse timeseries
res_rev = am_rev.fit(update_freq=5)
print(res_rev.summary())
***Industry Name (Forward)***: Mkt-RF Iteration: 5, Func. Count: 40, Neg. LLF: 16734.59951173937 Iteration: 10, Func. Count: 76, Neg. LLF: 16725.801446361995 Optimization terminated successfully. (Exit mode 0) Current function value: 16725.746445889257 Iterations: 13 Function evaluations: 94 Gradient evaluations: 13 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Mkt-RF R-squared: -0.001 Mean Model: Constant Mean Adj. R-squared: -0.001 Vol Model: GARCH Log-Likelihood: -16725.7 Distribution: Normal AIC: 33459.5 Method: Maximum Likelihood BIC: 33489.7 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:38 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0484 6.316e-03 7.662 1.836e-14 [3.601e-02,6.077e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 9.3982e-03 2.111e-03 4.452 8.510e-06 [5.261e-03,1.354e-02] alpha[1] 0.0917 1.139e-02 8.053 8.068e-16 [6.942e-02, 0.114] beta[1] 0.9004 1.145e-02 78.648 0.000 [ 0.878, 0.923] ============================================================================ Covariance estimator: robust ***Industry Name (Reverse)***: Mkt-RF Iteration: 5, Func. Count: 40, Neg. LLF: 16687.817315938606 Iteration: 10, Func. Count: 75, Neg. LLF: 16678.201068432514 Optimization terminated successfully. (Exit mode 0) Current function value: 16678.17884317169 Iterations: 13 Function evaluations: 94 Gradient evaluations: 13 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Mkt-RF R-squared: -0.001 Mean Model: Constant Mean Adj. R-squared: -0.001 Vol Model: GARCH Log-Likelihood: -16678.2 Distribution: Normal AIC: 33364.4 Method: Maximum Likelihood BIC: 33394.5 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:38 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0502 5.853e-03 8.581 9.373e-18 [3.875e-02,6.169e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 8.2194e-03 1.619e-03 5.076 3.864e-07 [5.045e-03,1.139e-02] alpha[1] 0.0962 7.825e-03 12.289 1.033e-34 [8.083e-02, 0.111] beta[1] 0.8977 8.102e-03 110.808 0.000 [ 0.882, 0.914] ============================================================================ Covariance estimator: robust ***Industry Name (Forward)***: SMB Iteration: 5, Func. Count: 38, Neg. LLF: 8709.502871702567 Iteration: 10, Func. Count: 75, Neg. LLF: 8706.210621517967 Optimization terminated successfully. (Exit mode 0) Current function value: 8706.209422257236 Iterations: 12 Function evaluations: 87 Gradient evaluations: 12 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: SMB R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -8706.21 Distribution: Normal AIC: 17420.4 Method: Maximum Likelihood BIC: 17450.6 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:38 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0123 3.694e-03 3.330 8.680e-04 [5.062e-03,1.954e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 2.2394e-03 4.711e-04 4.753 2.000e-06 [1.316e-03,3.163e-03] alpha[1] 0.0859 9.077e-03 9.465 2.931e-21 [6.812e-02, 0.104] beta[1] 0.9092 8.936e-03 101.747 0.000 [ 0.892, 0.927] ============================================================================ Covariance estimator: robust ***Industry Name (Reverse)***: SMB Iteration: 5, Func. Count: 41, Neg. LLF: 8733.307477367558 Iteration: 10, Func. Count: 77, Neg. LLF: 8725.16724146458 Optimization terminated successfully. (Exit mode 0) Current function value: 8725.166321820576 Iterations: 11 Function evaluations: 83 Gradient evaluations: 11 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: SMB R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -8725.17 Distribution: Normal AIC: 17458.3 Method: Maximum Likelihood BIC: 17488.5 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:38 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0107 3.765e-03 2.833 4.611e-03 [3.287e-03,1.804e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 2.3706e-03 5.043e-04 4.701 2.594e-06 [1.382e-03,3.359e-03] alpha[1] 0.0890 8.614e-03 10.327 5.320e-25 [7.208e-02, 0.106] beta[1] 0.9056 8.567e-03 105.702 0.000 [ 0.889, 0.922] ============================================================================ Covariance estimator: robust ***Industry Name (Forward)***: HML Iteration: 5, Func. Count: 40, Neg. LLF: 6596.831658066217 Iteration: 10, Func. Count: 75, Neg. LLF: 6573.218398198052 Optimization terminated successfully. (Exit mode 0) Current function value: 6572.819132932525 Iterations: 14 Function evaluations: 101 Gradient evaluations: 14 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: HML R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -6572.82 Distribution: Normal AIC: 13153.6 Method: Maximum Likelihood BIC: 13183.8 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:38 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 9.8457e-03 2.993e-03 3.289 1.005e-03 [3.979e-03,1.571e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 2.0469e-03 4.004e-04 5.113 3.178e-07 [1.262e-03,2.832e-03] alpha[1] 0.0958 9.885e-03 9.692 3.277e-22 [7.642e-02, 0.115] beta[1] 0.8963 1.055e-02 84.927 0.000 [ 0.876, 0.917] ============================================================================ Covariance estimator: robust ***Industry Name (Reverse)***: HML Iteration: 5, Func. Count: 44, Neg. LLF: 6648.109438172432 Iteration: 10, Func. Count: 80, Neg. LLF: 6604.093721414287 Iteration: 15, Func. Count: 114, Neg. LLF: 6601.908658586344 Optimization terminated successfully. (Exit mode 0) Current function value: 6601.908200694622 Iterations: 18 Function evaluations: 126 Gradient evaluations: 17 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: HML R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -6601.91 Distribution: Normal AIC: 13211.8 Method: Maximum Likelihood BIC: 13242.0 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:38 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 9.5113e-03 3.037e-03 3.132 1.735e-03 [3.560e-03,1.546e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 1.9129e-03 3.797e-04 5.038 4.713e-07 [1.169e-03,2.657e-03] alpha[1] 0.0909 8.756e-03 10.377 3.162e-25 [7.369e-02, 0.108] beta[1] 0.9014 9.763e-03 92.320 0.000 [ 0.882, 0.921] ============================================================================ Covariance estimator: robust ***Industry Name (Forward)***: RMW Positive directional derivative for linesearch (Exit mode 8) Current function value: 2371.7406000324763 Iterations: 6 Function evaluations: 18 Gradient evaluations: 2 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: RMW R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -2371.74 Distribution: Normal AIC: 4751.48 Method: Maximum Likelihood BIC: 4781.65 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:38 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0117 2.055e-03 5.686 1.302e-08 [7.656e-03,1.571e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 2.6907e-03 8.369e-04 3.215 1.304e-03 [1.050e-03,4.331e-03] alpha[1] 0.1000 1.500e-02 6.666 2.625e-11 [7.060e-02, 0.129] beta[1] 0.8800 2.061e-02 42.701 0.000 [ 0.840, 0.920] ============================================================================ Covariance estimator: robust WARNING: The optimizer did not indicate successful convergence. The message was Positive directional derivative for linesearch. See convergence_flag. ***Industry Name (Reverse)***: RMW Positive directional derivative for linesearch (Exit mode 8) Current function value: 2374.640197600779 Iterations: 5 Function evaluations: 6 Gradient evaluations: 1 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: RMW R-squared: 0.000 Mean Model: Constant Mean Adj. R-squared: 0.000 Vol Model: GARCH Log-Likelihood: -2374.64 Distribution: Normal AIC: 4757.28 Method: Maximum Likelihood BIC: 4787.45 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:39 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0130 2.043e-03 6.369 1.902e-10 [9.007e-03,1.701e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 2.6907e-03 6.725e-04 4.001 6.299e-05 [1.373e-03,4.009e-03] alpha[1] 0.1000 1.254e-02 7.978 1.491e-15 [7.543e-02, 0.125] beta[1] 0.8800 1.658e-02 53.063 0.000 [ 0.847, 0.913] ============================================================================ Covariance estimator: robust WARNING: The optimizer did not indicate successful convergence. The message was Positive directional derivative for linesearch. See convergence_flag. ***Industry Name (Forward)***: CMA
C:\Users\randl\Anaconda3\envs\nikola\lib\site-packages\arch\univariate\base.py:571: ConvergenceWarning: The optimizer returned code 8. The message is: Positive directional derivative for linesearch See scipy.optimize.fmin_slsqp for code meaning. ConvergenceWarning) C:\Users\randl\Anaconda3\envs\nikola\lib\site-packages\arch\univariate\base.py:571: ConvergenceWarning: The optimizer returned code 8. The message is: Positive directional derivative for linesearch See scipy.optimize.fmin_slsqp for code meaning. ConvergenceWarning)
Iteration: 5, Func. Count: 48, Neg. LLF: 3118.4188717669335 Positive directional derivative for linesearch (Exit mode 8) Current function value: 3108.0255270368143 Iterations: 12 Function evaluations: 74 Gradient evaluations: 8 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: CMA R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -3108.03 Distribution: Normal AIC: 6224.05 Method: Maximum Likelihood BIC: 6254.22 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:39 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 6.2631e-03 2.344e-03 2.672 7.533e-03 [1.670e-03,1.086e-02] Volatility Model ============================================================================= coef std err t P>|t| 95.0% Conf. Int. ----------------------------------------------------------------------------- omega 2.1592e-03 5.019e-03 0.430 0.667 [-7.679e-03,1.200e-02] alpha[1] 0.0809 8.444e-02 0.958 0.338 [-8.464e-02, 0.246] beta[1] 0.9006 0.127 7.113 1.136e-12 [ 0.652, 1.149] ============================================================================= Covariance estimator: robust WARNING: The optimizer did not indicate successful convergence. The message was Positive directional derivative for linesearch. See convergence_flag. ***Industry Name (Reverse)***: CMA Iteration: 5, Func. Count: 42, Neg. LLF: 3113.6414223355587 Iteration: 10, Func. Count: 87, Neg. LLF: 3096.0215680249485 Iteration: 15, Func. Count: 120, Neg. LLF: 3092.3128338652205 Optimization terminated successfully. (Exit mode 0) Current function value: 3092.3122521318437 Iterations: 19 Function evaluations: 138 Gradient evaluations: 18
C:\Users\randl\Anaconda3\envs\nikola\lib\site-packages\arch\univariate\base.py:571: ConvergenceWarning: The optimizer returned code 8. The message is: Positive directional derivative for linesearch See scipy.optimize.fmin_slsqp for code meaning. ConvergenceWarning)
Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: CMA R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -3092.31 Distribution: Normal AIC: 6192.62 Method: Maximum Likelihood BIC: 6222.79 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:39 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 6.2904e-03 2.364e-03 2.661 7.785e-03 [1.658e-03,1.092e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 9.5973e-04 2.496e-04 3.846 1.202e-04 [4.706e-04,1.449e-03] alpha[1] 0.0671 9.068e-03 7.404 1.325e-13 [4.936e-02,8.491e-02] beta[1] 0.9250 1.029e-02 89.902 0.000 [ 0.905, 0.945] ============================================================================ Covariance estimator: robust ***Industry Name (Forward)***: RF Inequality constraints incompatible (Exit mode 4) Current function value: -48479.902615081635 Iterations: 1 Function evaluations: 6 Gradient evaluations: 1 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: RF R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: 48479.9 Distribution: Normal AIC: -96951.8 Method: Maximum Likelihood BIC: -96921.6 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:39 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0182 9.576e-09 1.899e+06 0.000 [1.818e-02,1.818e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 3.1427e-06 7.494e-13 4.193e+06 0.000 [3.143e-06,3.143e-06] alpha[1] 0.2000 2.237e-03 89.422 0.000 [ 0.196, 0.204] beta[1] 0.7800 2.045e-03 381.500 0.000 [ 0.776, 0.784] ============================================================================ Covariance estimator: robust WARNING: The optimizer did not indicate successful convergence. The message was Inequality constraints incompatible. See convergence_flag. ***Industry Name (Reverse)***: RF Inequality constraints incompatible (Exit mode 4) Current function value: -48478.55702360397 Iterations: 1 Function evaluations: 6 Gradient evaluations: 1 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: RF R-squared: 0.000 Mean Model: Constant Mean Adj. R-squared: 0.000 Vol Model: GARCH Log-Likelihood: 48478.6 Distribution: Normal AIC: -96949.1 Method: Maximum Likelihood BIC: -96918.9 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:39 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0182 1.018e-08 1.787e+06 0.000 [1.818e-02,1.818e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 3.1427e-06 1.077e-12 2.918e+06 0.000 [3.143e-06,3.143e-06] alpha[1] 0.2000 2.263e-03 88.369 0.000 [ 0.196, 0.204] beta[1] 0.7800 2.079e-03 375.105 0.000 [ 0.776, 0.784] ============================================================================ Covariance estimator: robust WARNING: The optimizer did not indicate successful convergence. The message was Inequality constraints incompatible. See convergence_flag. ***Industry Name (Forward)***: MKT
C:\Users\randl\Anaconda3\envs\nikola\lib\site-packages\arch\univariate\base.py:571: ConvergenceWarning: The optimizer returned code 4. The message is: Inequality constraints incompatible See scipy.optimize.fmin_slsqp for code meaning. ConvergenceWarning) C:\Users\randl\Anaconda3\envs\nikola\lib\site-packages\arch\univariate\base.py:571: ConvergenceWarning: The optimizer returned code 4. The message is: Inequality constraints incompatible See scipy.optimize.fmin_slsqp for code meaning. ConvergenceWarning)
Iteration: 5, Func. Count: 40, Neg. LLF: 16731.492832095857 Iteration: 10, Func. Count: 76, Neg. LLF: 16722.656929069963 Optimization terminated successfully. (Exit mode 0) Current function value: 16722.5951086026 Iterations: 13 Function evaluations: 94 Gradient evaluations: 13 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: MKT R-squared: -0.001 Mean Model: Constant Mean Adj. R-squared: -0.001 Vol Model: GARCH Log-Likelihood: -16722.6 Distribution: Normal AIC: 33453.2 Method: Maximum Likelihood BIC: 33483.4 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:39 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0658 6.290e-03 10.463 1.273e-25 [5.348e-02,7.814e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 9.3880e-03 2.104e-03 4.462 8.124e-06 [5.264e-03,1.351e-02] alpha[1] 0.0917 1.140e-02 8.049 8.364e-16 [6.941e-02, 0.114] beta[1] 0.9005 1.144e-02 78.703 0.000 [ 0.878, 0.923] ============================================================================ Covariance estimator: robust ***Industry Name (Reverse)***: MKT Iteration: 5, Func. Count: 40, Neg. LLF: 16684.236263530434 Iteration: 10, Func. Count: 75, Neg. LLF: 16674.60452658196 Optimization terminated successfully. (Exit mode 0) Current function value: 16674.586540367545 Iterations: 12 Function evaluations: 88 Gradient evaluations: 12 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: MKT R-squared: -0.001 Mean Model: Constant Mean Adj. R-squared: -0.001 Vol Model: GARCH Log-Likelihood: -16674.6 Distribution: Normal AIC: 33357.2 Method: Maximum Likelihood BIC: 33387.3 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:39 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0677 5.844e-03 11.592 4.543e-31 [5.628e-02,7.919e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 8.2528e-03 1.629e-03 5.066 4.065e-07 [5.060e-03,1.145e-02] alpha[1] 0.0963 7.864e-03 12.247 1.734e-34 [8.090e-02, 0.112] beta[1] 0.8976 8.147e-03 110.171 0.000 [ 0.882, 0.914] ============================================================================ Covariance estimator: robust
All industry indices with FORWARD & BACKWARD timeseries (daily).¶
for column in df_industry_d:
print('***Industry Name (Forward)***: {0}\n'.format(column))
am = arch_model(df_industry_d[column])
res = am.fit(update_freq=5)
print(res.summary())
print('***Industry Name (Reverse)***: {0}\n'.format(column))
am_rev = arch_model(df_industry_d[column][::-1]) # reverse timeseries
res_rev = am_rev.fit(update_freq=5)
print(res_rev.summary())
***Industry Name (Forward)***: NoDur Iteration: 5, Func. Count: 41, Neg. LLF: 15492.705944464738 Iteration: 10, Func. Count: 78, Neg. LLF: 15485.169967829474 Optimization terminated successfully. (Exit mode 0) Current function value: 15485.169958165197 Iterations: 11 Function evaluations: 84 Gradient evaluations: 11 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: NoDur R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -15485.2 Distribution: Normal AIC: 30978.3 Method: Maximum Likelihood BIC: 31008.5 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:39 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0640 5.675e-03 11.272 1.794e-29 [5.284e-02,7.509e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 7.3524e-03 1.782e-03 4.126 3.688e-05 [3.860e-03,1.084e-02] alpha[1] 0.0860 1.076e-02 7.998 1.268e-15 [6.494e-02, 0.107] beta[1] 0.9068 1.146e-02 79.114 0.000 [ 0.884, 0.929] ============================================================================ Covariance estimator: robust ***Industry Name (Reverse)***: NoDur Iteration: 5, Func. Count: 42, Neg. LLF: 15464.406710982443 Iteration: 10, Func. Count: 77, Neg. LLF: 15456.689089630043 Optimization terminated successfully. (Exit mode 0) Current function value: 15456.689069506094 Iterations: 11 Function evaluations: 83 Gradient evaluations: 11 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: NoDur R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -15456.7 Distribution: Normal AIC: 30921.4 Method: Maximum Likelihood BIC: 30951.5 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:40 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0655 5.650e-03 11.590 4.628e-31 [5.441e-02,7.656e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 7.4178e-03 1.497e-03 4.954 7.263e-07 [4.483e-03,1.035e-02] alpha[1] 0.0905 8.127e-03 11.141 7.915e-29 [7.462e-02, 0.106] beta[1] 0.9019 8.649e-03 104.279 0.000 [ 0.885, 0.919] ============================================================================ Covariance estimator: robust ***Industry Name (Forward)***: Durbl Iteration: 5, Func. Count: 38, Neg. LLF: 21384.246812287965 Iteration: 10, Func. Count: 73, Neg. LLF: 21381.881872802725 Optimization terminated successfully. (Exit mode 0) Current function value: 21381.881254907657 Iterations: 12 Function evaluations: 85 Gradient evaluations: 12 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Durbl R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -21381.9 Distribution: Normal AIC: 42771.8 Method: Maximum Likelihood BIC: 42801.9 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:40 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0568 8.802e-03 6.448 1.135e-10 [3.950e-02,7.400e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 0.0205 4.385e-03 4.666 3.064e-06 [1.187e-02,2.906e-02] alpha[1] 0.0702 9.433e-03 7.438 1.019e-13 [5.168e-02,8.865e-02] beta[1] 0.9171 1.080e-02 84.902 0.000 [ 0.896, 0.938] ============================================================================ Covariance estimator: robust ***Industry Name (Reverse)***: Durbl Iteration: 5, Func. Count: 38, Neg. LLF: 21364.42571610683 Iteration: 10, Func. Count: 74, Neg. LLF: 21357.710255264654 Optimization terminated successfully. (Exit mode 0) Current function value: 21357.693334789055 Iterations: 13 Function evaluations: 92 Gradient evaluations: 13 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Durbl R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -21357.7 Distribution: Normal AIC: 42723.4 Method: Maximum Likelihood BIC: 42753.6 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:40 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0565 8.808e-03 6.412 1.438e-10 [3.921e-02,7.374e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 0.0204 3.466e-03 5.881 4.073e-09 [1.359e-02,2.718e-02] alpha[1] 0.0735 6.489e-03 11.330 9.340e-30 [6.080e-02,8.624e-02] beta[1] 0.9135 7.639e-03 119.590 0.000 [ 0.899, 0.929] ============================================================================ Covariance estimator: robust ***Industry Name (Forward)***: Manuf Iteration: 5, Func. Count: 42, Neg. LLF: 17662.95692593312 Iteration: 10, Func. Count: 76, Neg. LLF: 17657.425862615026 Optimization terminated successfully. (Exit mode 0) Current function value: 17657.425815186456 Iterations: 11 Function evaluations: 82 Gradient evaluations: 11 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Manuf R-squared: -0.001 Mean Model: Constant Mean Adj. R-squared: -0.001 Vol Model: GARCH Log-Likelihood: -17657.4 Distribution: Normal AIC: 35322.9 Method: Maximum Likelihood BIC: 35353.0 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:40 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0702 6.870e-03 10.220 1.612e-24 [5.675e-02,8.368e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 0.0125 2.823e-03 4.445 8.781e-06 [7.016e-03,1.808e-02] alpha[1] 0.0912 1.310e-02 6.961 3.376e-12 [6.552e-02, 0.117] beta[1] 0.8982 1.359e-02 66.077 0.000 [ 0.872, 0.925] ============================================================================ Covariance estimator: robust ***Industry Name (Reverse)***: Manuf Iteration: 5, Func. Count: 42, Neg. LLF: 17625.74310704491 Iteration: 10, Func. Count: 76, Neg. LLF: 17619.205897060987 Optimization terminated successfully. (Exit mode 0) Current function value: 17619.205853753512 Iterations: 11 Function evaluations: 82 Gradient evaluations: 11 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Manuf R-squared: -0.001 Mean Model: Constant Mean Adj. R-squared: -0.001 Vol Model: GARCH Log-Likelihood: -17619.2 Distribution: Normal AIC: 35246.4 Method: Maximum Likelihood BIC: 35276.6 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:40 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0714 6.453e-03 11.067 1.817e-28 [5.877e-02,8.406e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 0.0119 2.308e-03 5.148 2.630e-07 [7.360e-03,1.641e-02] alpha[1] 0.0947 8.395e-03 11.279 1.671e-29 [7.823e-02, 0.111] beta[1] 0.8952 9.310e-03 96.154 0.000 [ 0.877, 0.913] ============================================================================ Covariance estimator: robust ***Industry Name (Forward)***: Enrgy Iteration: 5, Func. Count: 39, Neg. LLF: 20687.555083514242 Iteration: 10, Func. Count: 75, Neg. LLF: 20676.12575718044 Optimization terminated successfully. (Exit mode 0) Current function value: 20676.011403865505 Iterations: 14 Function evaluations: 100 Gradient evaluations: 14 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Enrgy R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -20676.0 Distribution: Normal AIC: 41360.0 Method: Maximum Likelihood BIC: 41390.2 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:40 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0602 8.078e-03 7.451 9.290e-14 [4.436e-02,7.602e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 5.8579e-03 1.457e-03 4.021 5.784e-05 [3.003e-03,8.713e-03] alpha[1] 0.0688 9.757e-03 7.055 1.732e-12 [4.971e-02,8.796e-02] beta[1] 0.9305 8.909e-03 104.446 0.000 [ 0.913, 0.948] ============================================================================ Covariance estimator: robust ***Industry Name (Reverse)***: Enrgy Iteration: 5, Func. Count: 39, Neg. LLF: 20655.682540489353 Iteration: 10, Func. Count: 76, Neg. LLF: 20644.31078795778 Optimization terminated successfully. (Exit mode 0) Current function value: 20644.2294923583 Iterations: 14 Function evaluations: 101 Gradient evaluations: 14 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Enrgy R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -20644.2 Distribution: Normal AIC: 41296.5 Method: Maximum Likelihood BIC: 41326.6 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:40 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0583 7.706e-03 7.563 3.944e-14 [4.317e-02,7.338e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 6.2035e-03 1.529e-03 4.057 4.965e-05 [3.207e-03,9.200e-03] alpha[1] 0.0719 6.924e-03 10.387 2.846e-25 [5.834e-02,8.548e-02] beta[1] 0.9267 6.816e-03 135.969 0.000 [ 0.913, 0.940] ============================================================================ Covariance estimator: robust ***Industry Name (Forward)***: HiTec Iteration: 5, Func. Count: 39, Neg. LLF: 22100.18578679398 Iteration: 10, Func. Count: 74, Neg. LLF: 22093.325669656377 Optimization terminated successfully. (Exit mode 0) Current function value: 22093.324475802714 Iterations: 13 Function evaluations: 92 Gradient evaluations: 13 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: HiTec R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -22093.3 Distribution: Normal AIC: 44194.6 Method: Maximum Likelihood BIC: 44224.8 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:41 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0703 9.317e-03 7.543 4.590e-14 [5.202e-02,8.854e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 0.0225 4.703e-03 4.788 1.681e-06 [1.330e-02,3.174e-02] alpha[1] 0.0790 1.159e-02 6.819 9.159e-12 [5.633e-02, 0.102] beta[1] 0.9089 1.247e-02 72.900 0.000 [ 0.885, 0.933] ============================================================================ Covariance estimator: robust ***Industry Name (Reverse)***: HiTec Iteration: 5, Func. Count: 40, Neg. LLF: 22085.323950806513 Iteration: 10, Func. Count: 75, Neg. LLF: 22074.784183463074 Optimization terminated successfully. (Exit mode 0) Current function value: 22074.7594343502 Iterations: 14 Function evaluations: 99 Gradient evaluations: 14 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: HiTec R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -22074.8 Distribution: Normal AIC: 44157.5 Method: Maximum Likelihood BIC: 44187.7 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:41 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0723 8.946e-03 8.086 6.144e-16 [5.481e-02,8.988e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 0.0201 3.308e-03 6.082 1.187e-09 [1.364e-02,2.660e-02] alpha[1] 0.0772 6.588e-03 11.713 1.090e-31 [6.426e-02,9.008e-02] beta[1] 0.9119 7.386e-03 123.466 0.000 [ 0.897, 0.926] ============================================================================ Covariance estimator: robust ***Industry Name (Forward)***: Telcm Iteration: 5, Func. Count: 41, Neg. LLF: 18379.17718654361 Iteration: 10, Func. Count: 75, Neg. LLF: 18375.061039464323 Optimization terminated successfully. (Exit mode 0) Current function value: 18375.05832635383 Iterations: 12 Function evaluations: 87 Gradient evaluations: 12 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Telcm R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -18375.1 Distribution: Normal AIC: 36758.1 Method: Maximum Likelihood BIC: 36788.3 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:41 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0510 7.171e-03 7.118 1.099e-12 [3.698e-02,6.509e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 0.0131 4.284e-03 3.069 2.151e-03 [4.749e-03,2.154e-02] alpha[1] 0.0708 1.531e-02 4.626 3.728e-06 [4.081e-02, 0.101] beta[1] 0.9171 1.810e-02 50.666 0.000 [ 0.882, 0.953] ============================================================================ Covariance estimator: robust ***Industry Name (Reverse)***: Telcm Iteration: 5, Func. Count: 42, Neg. LLF: 18319.99384100336 Iteration: 10, Func. Count: 75, Neg. LLF: 18318.300934114854 Optimization terminated successfully. (Exit mode 0) Current function value: 18318.30091563107 Iterations: 11 Function evaluations: 81 Gradient evaluations: 11 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Telcm R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -18318.3 Distribution: Normal AIC: 36644.6 Method: Maximum Likelihood BIC: 36674.8 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:41 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0532 7.001e-03 7.598 3.013e-14 [3.947e-02,6.691e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 0.0175 4.295e-03 4.081 4.490e-05 [9.109e-03,2.595e-02] alpha[1] 0.0949 1.168e-02 8.121 4.631e-16 [7.197e-02, 0.118] beta[1] 0.8896 1.425e-02 62.426 0.000 [ 0.862, 0.918] ============================================================================ Covariance estimator: robust ***Industry Name (Forward)***: Shops Iteration: 5, Func. Count: 40, Neg. LLF: 18167.961611201546 Iteration: 10, Func. Count: 72, Neg. LLF: 18166.97256203468 Optimization terminated successfully. (Exit mode 0) Current function value: 18166.972562037005 Iterations: 10 Function evaluations: 72 Gradient evaluations: 10 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Shops R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -18167.0 Distribution: Normal AIC: 36341.9 Method: Maximum Likelihood BIC: 36372.1 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:41 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0666 6.918e-03 9.629 6.059e-22 [5.305e-02,8.017e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 0.0157 2.920e-03 5.364 8.121e-08 [9.942e-03,2.139e-02] alpha[1] 0.0886 1.036e-02 8.546 1.269e-17 [6.825e-02, 0.109] beta[1] 0.8970 1.148e-02 78.141 0.000 [ 0.875, 0.920] ============================================================================ Covariance estimator: robust ***Industry Name (Reverse)***: Shops Iteration: 5, Func. Count: 40, Neg. LLF: 18182.531626440355 Iteration: 10, Func. Count: 73, Neg. LLF: 18180.442609289734 Optimization terminated successfully. (Exit mode 0) Current function value: 18180.442552683864 Iterations: 11 Function evaluations: 79 Gradient evaluations: 11 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Shops R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -18180.4 Distribution: Normal AIC: 36368.9 Method: Maximum Likelihood BIC: 36399.1 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:41 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0667 6.932e-03 9.621 6.501e-22 [5.310e-02,8.028e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 0.0144 2.408e-03 5.967 2.413e-09 [9.650e-03,1.909e-02] alpha[1] 0.0835 6.677e-03 12.504 7.131e-36 [7.040e-02,9.658e-02] beta[1] 0.9028 7.852e-03 114.964 0.000 [ 0.887, 0.918] ============================================================================ Covariance estimator: robust ***Industry Name (Forward)***: Hlth Iteration: 5, Func. Count: 40, Neg. LLF: 18780.305461440927 Iteration: 10, Func. Count: 73, Neg. LLF: 18779.18703100809 Optimization terminated successfully. (Exit mode 0) Current function value: 18779.18703101317 Iterations: 10 Function evaluations: 73 Gradient evaluations: 10 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Hlth R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -18779.2 Distribution: Normal AIC: 37566.4 Method: Maximum Likelihood BIC: 37596.5 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:41 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0685 7.306e-03 9.378 6.755e-21 [5.419e-02,8.283e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 0.0158 2.892e-03 5.477 4.323e-08 [1.017e-02,2.151e-02] alpha[1] 0.0886 1.000e-02 8.858 8.143e-19 [6.900e-02, 0.108] beta[1] 0.8990 1.057e-02 85.039 0.000 [ 0.878, 0.920] ============================================================================ Covariance estimator: robust ***Industry Name (Reverse)***: Hlth Iteration: 5, Func. Count: 39, Neg. LLF: 18767.9626225076 Iteration: 10, Func. Count: 74, Neg. LLF: 18766.591193656688 Optimization terminated successfully. (Exit mode 0) Current function value: 18766.591141285186 Iterations: 11 Function evaluations: 80 Gradient evaluations: 11 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Hlth R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -18766.6 Distribution: Normal AIC: 37541.2 Method: Maximum Likelihood BIC: 37571.4 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:41 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0727 7.179e-03 10.133 3.949e-24 [5.867e-02,8.681e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 0.0151 2.562e-03 5.885 3.981e-09 [1.006e-02,2.010e-02] alpha[1] 0.0876 7.072e-03 12.380 3.343e-35 [7.369e-02, 0.101] beta[1] 0.9003 8.074e-03 111.500 0.000 [ 0.884, 0.916] ============================================================================ Covariance estimator: robust ***Industry Name (Forward)***: Utils Iteration: 5, Func. Count: 41, Neg. LLF: 13419.736287367752 Iteration: 10, Func. Count: 75, Neg. LLF: 13385.215890929463 Optimization terminated successfully. (Exit mode 0) Current function value: 13385.17247282786 Iterations: 14 Function evaluations: 101 Gradient evaluations: 13 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Utils R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -13385.2 Distribution: Normal AIC: 26778.3 Method: Maximum Likelihood BIC: 26808.5 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:41 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0410 4.612e-03 8.898 5.671e-19 [3.200e-02,5.007e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 3.5660e-03 1.134e-03 3.144 1.669e-03 [1.343e-03,5.789e-03] alpha[1] 0.1099 1.504e-02 7.310 2.675e-13 [8.045e-02, 0.139] beta[1] 0.8901 1.478e-02 60.235 0.000 [ 0.861, 0.919] ============================================================================ Covariance estimator: robust ***Industry Name (Reverse)***: Utils Iteration: 5, Func. Count: 41, Neg. LLF: 13396.070041371575 Iteration: 10, Func. Count: 75, Neg. LLF: 13370.608267915399 Optimization terminated successfully. (Exit mode 0) Current function value: 13370.607276771843 Iterations: 14 Function evaluations: 99 Gradient evaluations: 13 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Utils R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -13370.6 Distribution: Normal AIC: 26749.2 Method: Maximum Likelihood BIC: 26779.4 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:42 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0407 4.790e-03 8.494 1.988e-17 [3.130e-02,5.008e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 3.2135e-03 8.172e-04 3.932 8.415e-05 [1.612e-03,4.815e-03] alpha[1] 0.1062 1.040e-02 10.213 1.742e-24 [8.585e-02, 0.127] beta[1] 0.8938 1.047e-02 85.325 0.000 [ 0.873, 0.914] ============================================================================ Covariance estimator: robust ***Industry Name (Forward)***: Other Iteration: 5, Func. Count: 40, Neg. LLF: 17982.01533177335 Iteration: 10, Func. Count: 74, Neg. LLF: 17969.968935052333 Optimization terminated successfully. (Exit mode 0) Current function value: 17969.96753355024 Iterations: 12 Function evaluations: 86 Gradient evaluations: 12 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Other R-squared: -0.001 Mean Model: Constant Mean Adj. R-squared: -0.001 Vol Model: GARCH Log-Likelihood: -17970.0 Distribution: Normal AIC: 35947.9 Method: Maximum Likelihood BIC: 35978.1 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:42 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0765 6.867e-03 11.148 7.336e-29 [6.309e-02,9.001e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 0.0152 3.000e-03 5.066 4.070e-07 [9.318e-03,2.108e-02] alpha[1] 0.1073 1.298e-02 8.269 1.346e-16 [8.188e-02, 0.133] beta[1] 0.8812 1.348e-02 65.382 0.000 [ 0.855, 0.908] ============================================================================ Covariance estimator: robust ***Industry Name (Reverse)***: Other Iteration: 5, Func. Count: 40, Neg. LLF: 17955.192082163863 Iteration: 10, Func. Count: 73, Neg. LLF: 17942.172569033573 Optimization terminated successfully. (Exit mode 0) Current function value: 17942.166998649616 Iterations: 13 Function evaluations: 91 Gradient evaluations: 13 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Other R-squared: -0.001 Mean Model: Constant Mean Adj. R-squared: -0.001 Vol Model: GARCH Log-Likelihood: -17942.2 Distribution: Normal AIC: 35892.3 Method: Maximum Likelihood BIC: 35922.5 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:42 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0766 6.638e-03 11.543 7.963e-31 [6.361e-02,8.964e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 0.0143 2.314e-03 6.165 7.057e-10 [9.729e-03,1.880e-02] alpha[1] 0.1076 8.649e-03 12.440 1.593e-35 [9.064e-02, 0.125] beta[1] 0.8813 9.312e-03 94.648 0.000 [ 0.863, 0.900] ============================================================================ Covariance estimator: robust
All factor returns with FORWARD & BACKWARD timeseries (monthly).¶
for column in df_factor_d:
print('***Industry Name (Forward)***: {0}\n'.format(column))
am = arch_model(df_factor_d[column])
res = am.fit(update_freq=5)
print(res.summary())
print('***Industry Name (Reverse)***: {0}\n'.format(column))
am_rev = arch_model(df_factor_d[column][::-1]) # reverse timeseries
res_rev = am_rev.fit(update_freq=5)
print(res_rev.summary())
***Industry Name (Forward)***: Mkt-RF Iteration: 5, Func. Count: 40, Neg. LLF: 16734.59951173937 Iteration: 10, Func. Count: 76, Neg. LLF: 16725.801446361995 Optimization terminated successfully. (Exit mode 0) Current function value: 16725.746445889257 Iterations: 13 Function evaluations: 94 Gradient evaluations: 13 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Mkt-RF R-squared: -0.001 Mean Model: Constant Mean Adj. R-squared: -0.001 Vol Model: GARCH Log-Likelihood: -16725.7 Distribution: Normal AIC: 33459.5 Method: Maximum Likelihood BIC: 33489.7 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:42 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0484 6.316e-03 7.662 1.836e-14 [3.601e-02,6.077e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 9.3982e-03 2.111e-03 4.452 8.510e-06 [5.261e-03,1.354e-02] alpha[1] 0.0917 1.139e-02 8.053 8.068e-16 [6.942e-02, 0.114] beta[1] 0.9004 1.145e-02 78.648 0.000 [ 0.878, 0.923] ============================================================================ Covariance estimator: robust ***Industry Name (Reverse)***: Mkt-RF Iteration: 5, Func. Count: 40, Neg. LLF: 16687.817315938606 Iteration: 10, Func. Count: 75, Neg. LLF: 16678.201068432514 Optimization terminated successfully. (Exit mode 0) Current function value: 16678.17884317169 Iterations: 13 Function evaluations: 94 Gradient evaluations: 13 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Mkt-RF R-squared: -0.001 Mean Model: Constant Mean Adj. R-squared: -0.001 Vol Model: GARCH Log-Likelihood: -16678.2 Distribution: Normal AIC: 33364.4 Method: Maximum Likelihood BIC: 33394.5 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:42 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0502 5.853e-03 8.581 9.373e-18 [3.875e-02,6.169e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 8.2194e-03 1.619e-03 5.076 3.864e-07 [5.045e-03,1.139e-02] alpha[1] 0.0962 7.825e-03 12.289 1.033e-34 [8.083e-02, 0.111] beta[1] 0.8977 8.102e-03 110.808 0.000 [ 0.882, 0.914] ============================================================================ Covariance estimator: robust ***Industry Name (Forward)***: SMB Iteration: 5, Func. Count: 38, Neg. LLF: 8709.502871702567 Iteration: 10, Func. Count: 75, Neg. LLF: 8706.210621517967 Optimization terminated successfully. (Exit mode 0) Current function value: 8706.209422257236 Iterations: 12 Function evaluations: 87 Gradient evaluations: 12 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: SMB R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -8706.21 Distribution: Normal AIC: 17420.4 Method: Maximum Likelihood BIC: 17450.6 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:42 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0123 3.694e-03 3.330 8.680e-04 [5.062e-03,1.954e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 2.2394e-03 4.711e-04 4.753 2.000e-06 [1.316e-03,3.163e-03] alpha[1] 0.0859 9.077e-03 9.465 2.931e-21 [6.812e-02, 0.104] beta[1] 0.9092 8.936e-03 101.747 0.000 [ 0.892, 0.927] ============================================================================ Covariance estimator: robust ***Industry Name (Reverse)***: SMB Iteration: 5, Func. Count: 41, Neg. LLF: 8733.307477367558 Iteration: 10, Func. Count: 77, Neg. LLF: 8725.16724146458 Optimization terminated successfully. (Exit mode 0) Current function value: 8725.166321820576 Iterations: 11 Function evaluations: 83 Gradient evaluations: 11 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: SMB R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -8725.17 Distribution: Normal AIC: 17458.3 Method: Maximum Likelihood BIC: 17488.5 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:42 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0107 3.765e-03 2.833 4.611e-03 [3.287e-03,1.804e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 2.3706e-03 5.043e-04 4.701 2.594e-06 [1.382e-03,3.359e-03] alpha[1] 0.0890 8.614e-03 10.327 5.320e-25 [7.208e-02, 0.106] beta[1] 0.9056 8.567e-03 105.702 0.000 [ 0.889, 0.922] ============================================================================ Covariance estimator: robust ***Industry Name (Forward)***: HML Iteration: 5, Func. Count: 40, Neg. LLF: 6596.831658066217 Iteration: 10, Func. Count: 75, Neg. LLF: 6573.218398198052 Optimization terminated successfully. (Exit mode 0) Current function value: 6572.819132932525 Iterations: 14 Function evaluations: 101 Gradient evaluations: 14 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: HML R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -6572.82 Distribution: Normal AIC: 13153.6 Method: Maximum Likelihood BIC: 13183.8 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:42 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 9.8457e-03 2.993e-03 3.289 1.005e-03 [3.979e-03,1.571e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 2.0469e-03 4.004e-04 5.113 3.178e-07 [1.262e-03,2.832e-03] alpha[1] 0.0958 9.885e-03 9.692 3.277e-22 [7.642e-02, 0.115] beta[1] 0.8963 1.055e-02 84.927 0.000 [ 0.876, 0.917] ============================================================================ Covariance estimator: robust ***Industry Name (Reverse)***: HML Iteration: 5, Func. Count: 44, Neg. LLF: 6648.109438172432 Iteration: 10, Func. Count: 80, Neg. LLF: 6604.093721414287 Iteration: 15, Func. Count: 114, Neg. LLF: 6601.908658586344 Optimization terminated successfully. (Exit mode 0) Current function value: 6601.908200694622 Iterations: 18 Function evaluations: 126 Gradient evaluations: 17 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: HML R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -6601.91 Distribution: Normal AIC: 13211.8 Method: Maximum Likelihood BIC: 13242.0 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:43 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 9.5113e-03 3.037e-03 3.132 1.735e-03 [3.560e-03,1.546e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 1.9129e-03 3.797e-04 5.038 4.713e-07 [1.169e-03,2.657e-03] alpha[1] 0.0909 8.756e-03 10.377 3.162e-25 [7.369e-02, 0.108] beta[1] 0.9014 9.763e-03 92.320 0.000 [ 0.882, 0.921] ============================================================================ Covariance estimator: robust ***Industry Name (Forward)***: RMW Positive directional derivative for linesearch (Exit mode 8) Current function value: 2371.7406000324763 Iterations: 6 Function evaluations: 18 Gradient evaluations: 2 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: RMW R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -2371.74 Distribution: Normal AIC: 4751.48 Method: Maximum Likelihood BIC: 4781.65 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:43 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0117 2.055e-03 5.686 1.302e-08 [7.656e-03,1.571e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 2.6907e-03 8.369e-04 3.215 1.304e-03 [1.050e-03,4.331e-03] alpha[1] 0.1000 1.500e-02 6.666 2.625e-11 [7.060e-02, 0.129] beta[1] 0.8800 2.061e-02 42.701 0.000 [ 0.840, 0.920] ============================================================================ Covariance estimator: robust WARNING: The optimizer did not indicate successful convergence. The message was Positive directional derivative for linesearch. See convergence_flag. ***Industry Name (Reverse)***: RMW Positive directional derivative for linesearch (Exit mode 8) Current function value: 2374.640197600779 Iterations: 5 Function evaluations: 6 Gradient evaluations: 1 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: RMW R-squared: 0.000 Mean Model: Constant Mean Adj. R-squared: 0.000 Vol Model: GARCH Log-Likelihood: -2374.64 Distribution: Normal AIC: 4757.28 Method: Maximum Likelihood BIC: 4787.45 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:43 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0130 2.043e-03 6.369 1.902e-10 [9.007e-03,1.701e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 2.6907e-03 6.725e-04 4.001 6.299e-05 [1.373e-03,4.009e-03] alpha[1] 0.1000 1.254e-02 7.978 1.491e-15 [7.543e-02, 0.125] beta[1] 0.8800 1.658e-02 53.063 0.000 [ 0.847, 0.913] ============================================================================ Covariance estimator: robust WARNING: The optimizer did not indicate successful convergence. The message was Positive directional derivative for linesearch. See convergence_flag. ***Industry Name (Forward)***: CMA Iteration: 5, Func. Count: 48, Neg. LLF: 3118.4188717669335 Positive directional derivative for linesearch (Exit mode 8) Current function value: 3108.0255270368143 Iterations: 12 Function evaluations: 74 Gradient evaluations: 8 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: CMA R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -3108.03 Distribution: Normal AIC: 6224.05 Method: Maximum Likelihood BIC: 6254.22 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:43 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 6.2631e-03 2.344e-03 2.672 7.533e-03 [1.670e-03,1.086e-02] Volatility Model ============================================================================= coef std err t P>|t| 95.0% Conf. Int. ----------------------------------------------------------------------------- omega 2.1592e-03 5.019e-03 0.430 0.667 [-7.679e-03,1.200e-02] alpha[1] 0.0809 8.444e-02 0.958 0.338 [-8.464e-02, 0.246] beta[1] 0.9006 0.127 7.113 1.136e-12 [ 0.652, 1.149] ============================================================================= Covariance estimator: robust WARNING: The optimizer did not indicate successful convergence. The message was Positive directional derivative for linesearch. See convergence_flag. ***Industry Name (Reverse)***: CMA
C:\Users\randl\Anaconda3\envs\nikola\lib\site-packages\arch\univariate\base.py:571: ConvergenceWarning: The optimizer returned code 8. The message is: Positive directional derivative for linesearch See scipy.optimize.fmin_slsqp for code meaning. ConvergenceWarning) C:\Users\randl\Anaconda3\envs\nikola\lib\site-packages\arch\univariate\base.py:571: ConvergenceWarning: The optimizer returned code 8. The message is: Positive directional derivative for linesearch See scipy.optimize.fmin_slsqp for code meaning. ConvergenceWarning) C:\Users\randl\Anaconda3\envs\nikola\lib\site-packages\arch\univariate\base.py:571: ConvergenceWarning: The optimizer returned code 8. The message is: Positive directional derivative for linesearch See scipy.optimize.fmin_slsqp for code meaning. ConvergenceWarning)
Iteration: 5, Func. Count: 42, Neg. LLF: 3113.6414223355587 Iteration: 10, Func. Count: 87, Neg. LLF: 3096.0215680249485 Iteration: 15, Func. Count: 120, Neg. LLF: 3092.3128338652205 Optimization terminated successfully. (Exit mode 0) Current function value: 3092.3122521318437 Iterations: 19 Function evaluations: 138 Gradient evaluations: 18 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: CMA R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -3092.31 Distribution: Normal AIC: 6192.62 Method: Maximum Likelihood BIC: 6222.79 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:43 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 6.2904e-03 2.364e-03 2.661 7.785e-03 [1.658e-03,1.092e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 9.5973e-04 2.496e-04 3.846 1.202e-04 [4.706e-04,1.449e-03] alpha[1] 0.0671 9.068e-03 7.404 1.325e-13 [4.936e-02,8.491e-02] beta[1] 0.9250 1.029e-02 89.902 0.000 [ 0.905, 0.945] ============================================================================ Covariance estimator: robust ***Industry Name (Forward)***: RF Inequality constraints incompatible (Exit mode 4) Current function value: -48479.902615081635 Iterations: 1 Function evaluations: 6 Gradient evaluations: 1 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: RF R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: 48479.9 Distribution: Normal AIC: -96951.8 Method: Maximum Likelihood BIC: -96921.6 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:43 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0182 9.576e-09 1.899e+06 0.000 [1.818e-02,1.818e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 3.1427e-06 7.494e-13 4.193e+06 0.000 [3.143e-06,3.143e-06] alpha[1] 0.2000 2.237e-03 89.422 0.000 [ 0.196, 0.204] beta[1] 0.7800 2.045e-03 381.500 0.000 [ 0.776, 0.784] ============================================================================ Covariance estimator: robust WARNING: The optimizer did not indicate successful convergence. The message was Inequality constraints incompatible. See convergence_flag. ***Industry Name (Reverse)***: RF Inequality constraints incompatible (Exit mode 4) Current function value: -48478.55702360397 Iterations: 1 Function evaluations: 6 Gradient evaluations: 1 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: RF R-squared: 0.000 Mean Model: Constant Mean Adj. R-squared: 0.000 Vol Model: GARCH Log-Likelihood: 48478.6 Distribution: Normal AIC: -96949.1 Method: Maximum Likelihood BIC: -96918.9 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:43 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0182 1.018e-08 1.787e+06 0.000 [1.818e-02,1.818e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 3.1427e-06 1.077e-12 2.918e+06 0.000 [3.143e-06,3.143e-06] alpha[1] 0.2000 2.263e-03 88.369 0.000 [ 0.196, 0.204] beta[1] 0.7800 2.079e-03 375.105 0.000 [ 0.776, 0.784] ============================================================================ Covariance estimator: robust WARNING: The optimizer did not indicate successful convergence. The message was Inequality constraints incompatible. See convergence_flag. ***Industry Name (Forward)***: MKT Iteration: 5, Func. Count: 40, Neg. LLF: 16731.492832095857
C:\Users\randl\Anaconda3\envs\nikola\lib\site-packages\arch\univariate\base.py:571: ConvergenceWarning: The optimizer returned code 4. The message is: Inequality constraints incompatible See scipy.optimize.fmin_slsqp for code meaning. ConvergenceWarning) C:\Users\randl\Anaconda3\envs\nikola\lib\site-packages\arch\univariate\base.py:571: ConvergenceWarning: The optimizer returned code 4. The message is: Inequality constraints incompatible See scipy.optimize.fmin_slsqp for code meaning. ConvergenceWarning)
Iteration: 10, Func. Count: 76, Neg. LLF: 16722.656929069963 Optimization terminated successfully. (Exit mode 0) Current function value: 16722.5951086026 Iterations: 13 Function evaluations: 94 Gradient evaluations: 13 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: MKT R-squared: -0.001 Mean Model: Constant Mean Adj. R-squared: -0.001 Vol Model: GARCH Log-Likelihood: -16722.6 Distribution: Normal AIC: 33453.2 Method: Maximum Likelihood BIC: 33483.4 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:43 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0658 6.290e-03 10.463 1.273e-25 [5.348e-02,7.814e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 9.3880e-03 2.104e-03 4.462 8.124e-06 [5.264e-03,1.351e-02] alpha[1] 0.0917 1.140e-02 8.049 8.364e-16 [6.941e-02, 0.114] beta[1] 0.9005 1.144e-02 78.703 0.000 [ 0.878, 0.923] ============================================================================ Covariance estimator: robust ***Industry Name (Reverse)***: MKT Iteration: 5, Func. Count: 40, Neg. LLF: 16684.236263530434 Iteration: 10, Func. Count: 75, Neg. LLF: 16674.60452658196 Optimization terminated successfully. (Exit mode 0) Current function value: 16674.586540367545 Iterations: 12 Function evaluations: 88 Gradient evaluations: 12 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: MKT R-squared: -0.001 Mean Model: Constant Mean Adj. R-squared: -0.001 Vol Model: GARCH Log-Likelihood: -16674.6 Distribution: Normal AIC: 33357.2 Method: Maximum Likelihood BIC: 33387.3 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:43 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0677 5.844e-03 11.592 4.543e-31 [5.628e-02,7.919e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 8.2528e-03 1.629e-03 5.066 4.065e-07 [5.060e-03,1.145e-02] alpha[1] 0.0963 7.864e-03 12.247 1.734e-34 [8.090e-02, 0.112] beta[1] 0.8976 8.147e-03 110.171 0.000 [ 0.882, 0.914] ============================================================================ Covariance estimator: robust
All industry indices with FORWARD & BACKWARD timeseries (monthly).¶
for column in df_industry_d:
print('***Industry Name (Forward)***: {0}\n'.format(column))
am = arch_model(df_industry_d[column])
res = am.fit(update_freq=5)
print(res.summary())
print('***Industry Name (Reverse)***: {0}\n'.format(column))
am_rev = arch_model(df_industry_d[column][::-1]) # reverse timeseries
res_rev = am_rev.fit(update_freq=5)
print(res_rev.summary())
***Industry Name (Forward)***: NoDur Iteration: 5, Func. Count: 41, Neg. LLF: 15492.705944464738 Iteration: 10, Func. Count: 78, Neg. LLF: 15485.169967829474 Optimization terminated successfully. (Exit mode 0) Current function value: 15485.169958165197 Iterations: 11 Function evaluations: 84 Gradient evaluations: 11 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: NoDur R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -15485.2 Distribution: Normal AIC: 30978.3 Method: Maximum Likelihood BIC: 31008.5 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:43 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0640 5.675e-03 11.272 1.794e-29 [5.284e-02,7.509e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 7.3524e-03 1.782e-03 4.126 3.688e-05 [3.860e-03,1.084e-02] alpha[1] 0.0860 1.076e-02 7.998 1.268e-15 [6.494e-02, 0.107] beta[1] 0.9068 1.146e-02 79.114 0.000 [ 0.884, 0.929] ============================================================================ Covariance estimator: robust ***Industry Name (Reverse)***: NoDur Iteration: 5, Func. Count: 42, Neg. LLF: 15464.406710982443 Iteration: 10, Func. Count: 77, Neg. LLF: 15456.689089630043 Optimization terminated successfully. (Exit mode 0) Current function value: 15456.689069506094 Iterations: 11 Function evaluations: 83 Gradient evaluations: 11 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: NoDur R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -15456.7 Distribution: Normal AIC: 30921.4 Method: Maximum Likelihood BIC: 30951.5 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:44 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0655 5.650e-03 11.590 4.628e-31 [5.441e-02,7.656e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 7.4178e-03 1.497e-03 4.954 7.263e-07 [4.483e-03,1.035e-02] alpha[1] 0.0905 8.127e-03 11.141 7.915e-29 [7.462e-02, 0.106] beta[1] 0.9019 8.649e-03 104.279 0.000 [ 0.885, 0.919] ============================================================================ Covariance estimator: robust ***Industry Name (Forward)***: Durbl Iteration: 5, Func. Count: 38, Neg. LLF: 21384.246812287965 Iteration: 10, Func. Count: 73, Neg. LLF: 21381.881872802725 Optimization terminated successfully. (Exit mode 0) Current function value: 21381.881254907657 Iterations: 12 Function evaluations: 85 Gradient evaluations: 12 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Durbl R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -21381.9 Distribution: Normal AIC: 42771.8 Method: Maximum Likelihood BIC: 42801.9 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:44 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0568 8.802e-03 6.448 1.135e-10 [3.950e-02,7.400e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 0.0205 4.385e-03 4.666 3.064e-06 [1.187e-02,2.906e-02] alpha[1] 0.0702 9.433e-03 7.438 1.019e-13 [5.168e-02,8.865e-02] beta[1] 0.9171 1.080e-02 84.902 0.000 [ 0.896, 0.938] ============================================================================ Covariance estimator: robust ***Industry Name (Reverse)***: Durbl Iteration: 5, Func. Count: 38, Neg. LLF: 21364.42571610683 Iteration: 10, Func. Count: 74, Neg. LLF: 21357.710255264654 Optimization terminated successfully. (Exit mode 0) Current function value: 21357.693334789055 Iterations: 13 Function evaluations: 92 Gradient evaluations: 13 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Durbl R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -21357.7 Distribution: Normal AIC: 42723.4 Method: Maximum Likelihood BIC: 42753.6 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:44 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0565 8.808e-03 6.412 1.438e-10 [3.921e-02,7.374e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 0.0204 3.466e-03 5.881 4.073e-09 [1.359e-02,2.718e-02] alpha[1] 0.0735 6.489e-03 11.330 9.340e-30 [6.080e-02,8.624e-02] beta[1] 0.9135 7.639e-03 119.590 0.000 [ 0.899, 0.929] ============================================================================ Covariance estimator: robust ***Industry Name (Forward)***: Manuf Iteration: 5, Func. Count: 42, Neg. LLF: 17662.95692593312 Iteration: 10, Func. Count: 76, Neg. LLF: 17657.425862615026 Optimization terminated successfully. (Exit mode 0) Current function value: 17657.425815186456 Iterations: 11 Function evaluations: 82 Gradient evaluations: 11 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Manuf R-squared: -0.001 Mean Model: Constant Mean Adj. R-squared: -0.001 Vol Model: GARCH Log-Likelihood: -17657.4 Distribution: Normal AIC: 35322.9 Method: Maximum Likelihood BIC: 35353.0 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:44 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0702 6.870e-03 10.220 1.612e-24 [5.675e-02,8.368e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 0.0125 2.823e-03 4.445 8.781e-06 [7.016e-03,1.808e-02] alpha[1] 0.0912 1.310e-02 6.961 3.376e-12 [6.552e-02, 0.117] beta[1] 0.8982 1.359e-02 66.077 0.000 [ 0.872, 0.925] ============================================================================ Covariance estimator: robust ***Industry Name (Reverse)***: Manuf Iteration: 5, Func. Count: 42, Neg. LLF: 17625.74310704491 Iteration: 10, Func. Count: 76, Neg. LLF: 17619.205897060987 Optimization terminated successfully. (Exit mode 0) Current function value: 17619.205853753512 Iterations: 11 Function evaluations: 82 Gradient evaluations: 11 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Manuf R-squared: -0.001 Mean Model: Constant Mean Adj. R-squared: -0.001 Vol Model: GARCH Log-Likelihood: -17619.2 Distribution: Normal AIC: 35246.4 Method: Maximum Likelihood BIC: 35276.6 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:44 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0714 6.453e-03 11.067 1.817e-28 [5.877e-02,8.406e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 0.0119 2.308e-03 5.148 2.630e-07 [7.360e-03,1.641e-02] alpha[1] 0.0947 8.395e-03 11.279 1.671e-29 [7.823e-02, 0.111] beta[1] 0.8952 9.310e-03 96.154 0.000 [ 0.877, 0.913] ============================================================================ Covariance estimator: robust ***Industry Name (Forward)***: Enrgy Iteration: 5, Func. Count: 39, Neg. LLF: 20687.555083514242 Iteration: 10, Func. Count: 75, Neg. LLF: 20676.12575718044 Optimization terminated successfully. (Exit mode 0) Current function value: 20676.011403865505 Iterations: 14 Function evaluations: 100 Gradient evaluations: 14 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Enrgy R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -20676.0 Distribution: Normal AIC: 41360.0 Method: Maximum Likelihood BIC: 41390.2 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:44 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0602 8.078e-03 7.451 9.290e-14 [4.436e-02,7.602e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 5.8579e-03 1.457e-03 4.021 5.784e-05 [3.003e-03,8.713e-03] alpha[1] 0.0688 9.757e-03 7.055 1.732e-12 [4.971e-02,8.796e-02] beta[1] 0.9305 8.909e-03 104.446 0.000 [ 0.913, 0.948] ============================================================================ Covariance estimator: robust ***Industry Name (Reverse)***: Enrgy Iteration: 5, Func. Count: 39, Neg. LLF: 20655.682540489353 Iteration: 10, Func. Count: 76, Neg. LLF: 20644.31078795778 Optimization terminated successfully. (Exit mode 0) Current function value: 20644.2294923583 Iterations: 14 Function evaluations: 101 Gradient evaluations: 14 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Enrgy R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -20644.2 Distribution: Normal AIC: 41296.5 Method: Maximum Likelihood BIC: 41326.6 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:44 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0583 7.706e-03 7.563 3.944e-14 [4.317e-02,7.338e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 6.2035e-03 1.529e-03 4.057 4.965e-05 [3.207e-03,9.200e-03] alpha[1] 0.0719 6.924e-03 10.387 2.846e-25 [5.834e-02,8.548e-02] beta[1] 0.9267 6.816e-03 135.969 0.000 [ 0.913, 0.940] ============================================================================ Covariance estimator: robust ***Industry Name (Forward)***: HiTec Iteration: 5, Func. Count: 39, Neg. LLF: 22100.18578679398 Iteration: 10, Func. Count: 74, Neg. LLF: 22093.325669656377 Optimization terminated successfully. (Exit mode 0) Current function value: 22093.324475802714 Iterations: 13 Function evaluations: 92 Gradient evaluations: 13 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: HiTec R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -22093.3 Distribution: Normal AIC: 44194.6 Method: Maximum Likelihood BIC: 44224.8 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:45 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0703 9.317e-03 7.543 4.590e-14 [5.202e-02,8.854e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 0.0225 4.703e-03 4.788 1.681e-06 [1.330e-02,3.174e-02] alpha[1] 0.0790 1.159e-02 6.819 9.159e-12 [5.633e-02, 0.102] beta[1] 0.9089 1.247e-02 72.900 0.000 [ 0.885, 0.933] ============================================================================ Covariance estimator: robust ***Industry Name (Reverse)***: HiTec Iteration: 5, Func. Count: 40, Neg. LLF: 22085.323950806513 Iteration: 10, Func. Count: 75, Neg. LLF: 22074.784183463074 Optimization terminated successfully. (Exit mode 0) Current function value: 22074.7594343502 Iterations: 14 Function evaluations: 99 Gradient evaluations: 14 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: HiTec R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -22074.8 Distribution: Normal AIC: 44157.5 Method: Maximum Likelihood BIC: 44187.7 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:45 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0723 8.946e-03 8.086 6.144e-16 [5.481e-02,8.988e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 0.0201 3.308e-03 6.082 1.187e-09 [1.364e-02,2.660e-02] alpha[1] 0.0772 6.588e-03 11.713 1.090e-31 [6.426e-02,9.008e-02] beta[1] 0.9119 7.386e-03 123.466 0.000 [ 0.897, 0.926] ============================================================================ Covariance estimator: robust ***Industry Name (Forward)***: Telcm Iteration: 5, Func. Count: 41, Neg. LLF: 18379.17718654361 Iteration: 10, Func. Count: 75, Neg. LLF: 18375.061039464323 Optimization terminated successfully. (Exit mode 0) Current function value: 18375.05832635383 Iterations: 12 Function evaluations: 87 Gradient evaluations: 12 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Telcm R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -18375.1 Distribution: Normal AIC: 36758.1 Method: Maximum Likelihood BIC: 36788.3 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:45 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0510 7.171e-03 7.118 1.099e-12 [3.698e-02,6.509e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 0.0131 4.284e-03 3.069 2.151e-03 [4.749e-03,2.154e-02] alpha[1] 0.0708 1.531e-02 4.626 3.728e-06 [4.081e-02, 0.101] beta[1] 0.9171 1.810e-02 50.666 0.000 [ 0.882, 0.953] ============================================================================ Covariance estimator: robust ***Industry Name (Reverse)***: Telcm Iteration: 5, Func. Count: 42, Neg. LLF: 18319.99384100336 Iteration: 10, Func. Count: 75, Neg. LLF: 18318.300934114854 Optimization terminated successfully. (Exit mode 0) Current function value: 18318.30091563107 Iterations: 11 Function evaluations: 81 Gradient evaluations: 11 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Telcm R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -18318.3 Distribution: Normal AIC: 36644.6 Method: Maximum Likelihood BIC: 36674.8 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:45 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0532 7.001e-03 7.598 3.013e-14 [3.947e-02,6.691e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 0.0175 4.295e-03 4.081 4.490e-05 [9.109e-03,2.595e-02] alpha[1] 0.0949 1.168e-02 8.121 4.631e-16 [7.197e-02, 0.118] beta[1] 0.8896 1.425e-02 62.426 0.000 [ 0.862, 0.918] ============================================================================ Covariance estimator: robust ***Industry Name (Forward)***: Shops Iteration: 5, Func. Count: 40, Neg. LLF: 18167.961611201546 Iteration: 10, Func. Count: 72, Neg. LLF: 18166.97256203468 Optimization terminated successfully. (Exit mode 0) Current function value: 18166.972562037005 Iterations: 10 Function evaluations: 72 Gradient evaluations: 10 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Shops R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -18167.0 Distribution: Normal AIC: 36341.9 Method: Maximum Likelihood BIC: 36372.1 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:45 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0666 6.918e-03 9.629 6.059e-22 [5.305e-02,8.017e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 0.0157 2.920e-03 5.364 8.121e-08 [9.942e-03,2.139e-02] alpha[1] 0.0886 1.036e-02 8.546 1.269e-17 [6.825e-02, 0.109] beta[1] 0.8970 1.148e-02 78.141 0.000 [ 0.875, 0.920] ============================================================================ Covariance estimator: robust ***Industry Name (Reverse)***: Shops Iteration: 5, Func. Count: 40, Neg. LLF: 18182.531626440355 Iteration: 10, Func. Count: 73, Neg. LLF: 18180.442609289734 Optimization terminated successfully. (Exit mode 0) Current function value: 18180.442552683864 Iterations: 11 Function evaluations: 79 Gradient evaluations: 11 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Shops R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -18180.4 Distribution: Normal AIC: 36368.9 Method: Maximum Likelihood BIC: 36399.1 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:45 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0667 6.932e-03 9.621 6.501e-22 [5.310e-02,8.028e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 0.0144 2.408e-03 5.967 2.413e-09 [9.650e-03,1.909e-02] alpha[1] 0.0835 6.677e-03 12.504 7.131e-36 [7.040e-02,9.658e-02] beta[1] 0.9028 7.852e-03 114.964 0.000 [ 0.887, 0.918] ============================================================================ Covariance estimator: robust ***Industry Name (Forward)***: Hlth Iteration: 5, Func. Count: 40, Neg. LLF: 18780.305461440927 Iteration: 10, Func. Count: 73, Neg. LLF: 18779.18703100809 Optimization terminated successfully. (Exit mode 0) Current function value: 18779.18703101317 Iterations: 10 Function evaluations: 73 Gradient evaluations: 10 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Hlth R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -18779.2 Distribution: Normal AIC: 37566.4 Method: Maximum Likelihood BIC: 37596.5 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:45 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0685 7.306e-03 9.378 6.755e-21 [5.419e-02,8.283e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 0.0158 2.892e-03 5.477 4.323e-08 [1.017e-02,2.151e-02] alpha[1] 0.0886 1.000e-02 8.858 8.143e-19 [6.900e-02, 0.108] beta[1] 0.8990 1.057e-02 85.039 0.000 [ 0.878, 0.920] ============================================================================ Covariance estimator: robust ***Industry Name (Reverse)***: Hlth Iteration: 5, Func. Count: 39, Neg. LLF: 18767.9626225076 Iteration: 10, Func. Count: 74, Neg. LLF: 18766.591193656688 Optimization terminated successfully. (Exit mode 0) Current function value: 18766.591141285186 Iterations: 11 Function evaluations: 80 Gradient evaluations: 11 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Hlth R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -18766.6 Distribution: Normal AIC: 37541.2 Method: Maximum Likelihood BIC: 37571.4 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:45 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0727 7.179e-03 10.133 3.949e-24 [5.867e-02,8.681e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 0.0151 2.562e-03 5.885 3.981e-09 [1.006e-02,2.010e-02] alpha[1] 0.0876 7.072e-03 12.380 3.343e-35 [7.369e-02, 0.101] beta[1] 0.9003 8.074e-03 111.500 0.000 [ 0.884, 0.916] ============================================================================ Covariance estimator: robust ***Industry Name (Forward)***: Utils Iteration: 5, Func. Count: 41, Neg. LLF: 13419.736287367752 Iteration: 10, Func. Count: 75, Neg. LLF: 13385.215890929463 Optimization terminated successfully. (Exit mode 0) Current function value: 13385.17247282786 Iterations: 14 Function evaluations: 101 Gradient evaluations: 13 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Utils R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -13385.2 Distribution: Normal AIC: 26778.3 Method: Maximum Likelihood BIC: 26808.5 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:46 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0410 4.612e-03 8.898 5.671e-19 [3.200e-02,5.007e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 3.5660e-03 1.134e-03 3.144 1.669e-03 [1.343e-03,5.789e-03] alpha[1] 0.1099 1.504e-02 7.310 2.675e-13 [8.045e-02, 0.139] beta[1] 0.8901 1.478e-02 60.235 0.000 [ 0.861, 0.919] ============================================================================ Covariance estimator: robust ***Industry Name (Reverse)***: Utils Iteration: 5, Func. Count: 41, Neg. LLF: 13396.070041371575 Iteration: 10, Func. Count: 75, Neg. LLF: 13370.608267915399 Optimization terminated successfully. (Exit mode 0) Current function value: 13370.607276771843 Iterations: 14 Function evaluations: 99 Gradient evaluations: 13 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Utils R-squared: -0.000 Mean Model: Constant Mean Adj. R-squared: -0.000 Vol Model: GARCH Log-Likelihood: -13370.6 Distribution: Normal AIC: 26749.2 Method: Maximum Likelihood BIC: 26779.4 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:46 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0407 4.790e-03 8.494 1.988e-17 [3.130e-02,5.008e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 3.2135e-03 8.172e-04 3.932 8.415e-05 [1.612e-03,4.815e-03] alpha[1] 0.1062 1.040e-02 10.213 1.742e-24 [8.585e-02, 0.127] beta[1] 0.8938 1.047e-02 85.325 0.000 [ 0.873, 0.914] ============================================================================ Covariance estimator: robust ***Industry Name (Forward)***: Other Iteration: 5, Func. Count: 40, Neg. LLF: 17982.01533177335 Iteration: 10, Func. Count: 74, Neg. LLF: 17969.968935052333 Optimization terminated successfully. (Exit mode 0) Current function value: 17969.96753355024 Iterations: 12 Function evaluations: 86 Gradient evaluations: 12 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Other R-squared: -0.001 Mean Model: Constant Mean Adj. R-squared: -0.001 Vol Model: GARCH Log-Likelihood: -17970.0 Distribution: Normal AIC: 35947.9 Method: Maximum Likelihood BIC: 35978.1 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:46 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0765 6.867e-03 11.148 7.336e-29 [6.309e-02,9.001e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 0.0152 3.000e-03 5.066 4.070e-07 [9.318e-03,2.108e-02] alpha[1] 0.1073 1.298e-02 8.269 1.346e-16 [8.188e-02, 0.133] beta[1] 0.8812 1.348e-02 65.382 0.000 [ 0.855, 0.908] ============================================================================ Covariance estimator: robust ***Industry Name (Reverse)***: Other Iteration: 5, Func. Count: 40, Neg. LLF: 17955.192082163863 Iteration: 10, Func. Count: 73, Neg. LLF: 17942.172569033573 Optimization terminated successfully. (Exit mode 0) Current function value: 17942.166998649616 Iterations: 13 Function evaluations: 91 Gradient evaluations: 13 Constant Mean - GARCH Model Results ============================================================================== Dep. Variable: Other R-squared: -0.001 Mean Model: Constant Mean Adj. R-squared: -0.001 Vol Model: GARCH Log-Likelihood: -17942.2 Distribution: Normal AIC: 35892.3 Method: Maximum Likelihood BIC: 35922.5 No. Observations: 13932 Date: Mon, Jan 07 2019 Df Residuals: 13928 Time: 11:52:46 Df Model: 4 Mean Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- mu 0.0766 6.638e-03 11.543 7.963e-31 [6.361e-02,8.964e-02] Volatility Model ============================================================================ coef std err t P>|t| 95.0% Conf. Int. ---------------------------------------------------------------------------- omega 0.0143 2.314e-03 6.165 7.057e-10 [9.729e-03,1.880e-02] alpha[1] 0.1076 8.649e-03 12.440 1.593e-35 [9.064e-02, 0.125] beta[1] 0.8813 9.312e-03 94.648 0.000 [ 0.863, 0.900] ============================================================================ Covariance estimator: robust
Conclusion¶
As can be seen from the above results for both market returns (and other factor returns), and industry indices, there does not seem to be clear evidence that fitting a GARCH model on a reversed time series results in substantially poorer model fits. Although there is a possibility that there is an error with the package or GARCH model code, this remains unlikely as the package is written by Kevin Sheppard from Oxford University (who was also an ex-PhD student of Nobel Prize winner, Prof. Robert Engle of NYU-Stern School of Business). Our testing has covered both daily and monthly datasets from a reliable data source (i.e., Ken French's website).
Furthermore, as our tests cover both factor and industry returns, we observe that the GARCH model parameters are not necessarily whole numbers. We have also used a simple GARCH model with a constant mean and normal error distribution.
Comments
Comments powered by Disqus