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Abstract

Asymmetric dependence in equities markets has been shown to have
detrimental effects on portfolio diversification as assets within the portfolio
exhibit greater correlations during market downturns compared to market
upturns. By applying the Clayton canonical vine copula (CVC) to model
asymmetric dependence, we produce a measure of systemic risk across a
portfolio of assets. In addition, we use the Clayton CVC to produce estimates
of expected returns in an application to higher-moment portfolio optimisation
and find evidence of an improvement in performance across a range of risk-
adjusted return measures and the indices of acceptability.
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1. Introduction

Investing in diversified portfolios is a fundamental principle in modern
portfolio management and mean-variance (MV) optimisation. However, it
oversimplifies the challenge of portfolio construction especially when returns
are non-normal (Brands and Gallagher, 2005; Benson et al., 2008; Doan
et al., 2014) and asymmetric dependence (also known as asymmetric
correlations) is shown to exist in equities markets (Longin and Solnik,
1995, 2001; Ang and Chen, 2002). Furthermore, behavioural finance studies
show that managing higher moments (e.g. skewness and kurtosis) in
investment portfolios is of increasing importance to investors (Kahneman
and Tversky, 1979; Benson et al., 2007; Qiao et al., 2014) and is crucial to
minimising exposure to downside risk (Chua et al., 2009; Low et al., 2013).
As risk within the MV framework is denoted by the variance–covariance
matrix (VCV) matrix, MV optimisation falls short of being able to account
for the existence of asymmetric dependence within portfolios, or investor
preferences for higher moments.
Ideally, risk managers would like a quantitative measure that is able to

indicate when financial markets are approaching a period of turbulence to
reduce risk-taking by traders. Portfolio managers want diversification on the
downside and unification on the upside to maximise risk-adjusted returns on
investment portfolios. We show an application of the Clayton canonical vine
copula (CVC) that, by modelling asymmetric dependence across a portfolio of
assets, is able to generate an estimate of aggregate asymmetric correlations that
can be used as a proxy for systemic risk in an investment universe. In addition,
by simulating asset returns using the Clayton CVC, we incorporate the
persistence of asymmetric correlations in the estimates of expected returns. By
doing so, we improve the sample inputs applied to full-scale optimisation
(FSO) that leads to enhanced out-of-sample performance outcomes in higher-
moment portfolio optimisation applications.
Full-scale optimisation methodology is demonstrated by Adler and

Kritzman (2007) and Chua et al. (2009) as an optimisation technique that
is able to incorporate investor preferences for higher moments (El-Hassan
and Kofman, 2003; Pinnuck, 2004; Qiao et al., 2014). Hagstr€omer et al.
(2008) report that the magnitude of the performance improvements of FSO
decreases in out-of-sample tests due to estimation errors. Thus, Hagstr€omer
et al. (2008) conclude that the successful performance of FSO is dependent
upon the quality of sample returns input into the optimisation process. They
add that the quality of inputs is determined by the persistence of the
properties of the sample return distributions during the out-of-sample
period.
To reduce the impact of estimation error in FSO, application of a

probability model that captures asymmetric dependence in the distribution
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of returns should result in enhanced portfolio performance, compared to the
use of historical returns samples. Such an approach shows great promise as
excessive downside correlations have been shown to exist in the US equities
market (Ang and Chen, 2002) and international equities markets
(Longin and Solnik, 1995, 2001). Kritzman et al. (2010) find that using
plausible assumptions tied to economic intuition to estimate
expected returns, the performance of optimised portfolios is substantially
improved.
Low et al. (2013) apply the Clayton CVC to model asymmetric

dependence in equities returns to minimise the event of extreme losses,
and find improved out-of-sample performance compared to a Gaussian
modelling approach. It is intuitive to expect that if an appropriate
model that is able to exploit correlation asymmetries is used, the FSO
method as applied to utility functions with higher-moment preferences
should be improved due to the resulting reduction in the degree of
estimation error.
Specifically, we apply a mathematical model that allows for asymmetries in

the dependence structure, volatility and skewness to generate estimates of
expected returns for input into FSO. Asymmetries in the dependence
structure are captured using the Clayton CVC. A GARCH-GJR (Glosten
et al., 1993) and the skewed Student t (Skew-T) are used to capture
asymmetric volatility, skewness and kurtosis within the marginals. Our
application of FSO involves a range of S-curve, bilinear and kinked power
utility functions. For robustness, we use a variety of parameters in our
application of each utility function over a range of data sets consisting US
industry and international country indices. A set of risk-adjusted return
metrics are applied to provide economic intuition and indices of acceptability
(Cherny and Madan, 2009) to compare the performance between using our
forecasting model compared to historical sampling windows to evaluate the
reduction in estimation error. The indices of acceptability are designed as
ranking performance measures for evaluating the degree of consensus
surrounding investment performance in the presence of non-normal and
nonlinear returns distributions. Thus, they are useful for investors with
higher-moment preferences and the evaluation of hedge fund performance
(Eberlein and Madan, 2009).
Our results show that the Clayton CVC is able to generate a US

Asymmetric Dependence Index that increases sharply during notable crisis
periods in the US market. This indicates that during crisis periods,
asymmetric correlations increase significantly. Furthermore, we find that
compared to historical returns, accounting for returns asymmetries in the
forecasting process is able to produce greater risk-adjusted returns and indices
of acceptability for investors with higher-moment preferences. Management
of correlation asymmetries reduces the degree of error in the estimation of
expected returns therefore successfully improving FSO. We find that kinked
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power utility investors (i.e. conservative investors) have Sharpe ratios ranging
from 1.07 to 8.27 with historical returns samples, and this improves to 8.65 to
11.64 with asymmetric returns estimates. For S-curve utility investors (i.e.
aggressive investors), the Sharpe ratios range from �4.11 to 1.37 with
historical returns samples, and this improves to 9.57 to 14.91 with asymmetric
returns estimates. The indices of acceptability as measured by AIMAXMIN
range from 1.98 to 3.35 (2.33 to 5.10) for kinked power (S-curve) utility
investors. Thus, we find that investors who exhibit the least caution in their
investment approach have the greatest economic benefits as indicated by risk-
adjusted returns when asymmetric returns estimates are used. Similarly,
investors who are conservative also exhibit higher scores across the indices of
acceptability.
The novelty of our contribution is threefold. First, we use the Clayton

CVC to generate an Asymmetric Dependence Index for the US market that
shows that asymmetric correlations increase during notable crisis periods.
Second, we reduce estimation error by applying the FSO methodology
incorporating higher-moment investor preferences, with returns forecasts that
account for asymmetries within the dependence structure and marginals
using the Clayton CVC. Vine copulas are found to be useful in forecasting
value-at-risk (VaR) and minimising conditional value-at-risk (CVaR) (Low
et al., 2013). We extend this literature to evaluate the benefits of vine
copulas in modelling asymmetric correlations in constructing portfolios for
investors who require higher-moment risk premiums. Successfully managing
asymmetric correlations is valuable as Wang and Bidarkota (2010) show that
over the long run, the presence of fat tails in financial and macroeconomic
time series results in risk-averse agents demanding a higher equity premium
to compensate the increased frequency of extreme events. Third, previous
studies on FSO have used historical data in out-of-sample, single-period
studies of 10 years or less with no short sales (Adler and Kritzman, 2007;
Hagstr€omer et al., 2008; Hagstr€omer and Binner, 2009). We build upon this
literature by implementing a more rigorous study of FSO, for a variety of
utility functions on several data sets over a long-term investor horizon in a
tactical asset allocation exercise that allows for portfolio rebalancing and
short sales.
The paper is organised as follows. Section 2 describes our data set that

consists of portfolios of US and international country indices. Section 3
outlines the Clayton copula and the vine copula models. The FSO methodology
and the utility functions applied are detailed in Section 4. Section 5 describes
the research method used to examine the persistence of asymmetric correlations
using the Clayton CVC in an out-of-sample portfolio optimisation investiga-
tion. In Section 6, we present the empirical results of our study regarding the
out-of-sample performance of applying the Clayton CVC in higher-moment
portfolio optimisation applications with FSO. We summarise and conclude our
work in Section 7.
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2. Data

Our investigation is performed on US industry equity indices. We use
arithmetic returns in excess of the risk-free rate1 and US industry portfolios.2

The full time series sample of all constituent assets of the US portfolios rejects
the Jarque–Bera test of normality at the 1 percent level.3 We use rolling-
sampling windows of historical returns of 10 years for direct input into the
optimisation model or to parameterise our models for estimating expected
returns. This results in an out-of-sample period of 26 years for the US industry
indices data set. Details of our sample period and the data source are shown in
Table 1.
By allocating wealth across portfolios of indices rather than individual

stocks, these diversified portfolios are readily investable as index futures. As a
result, they exhibit lower idiosyncratic risk, higher liquidity, minimal transac-
tion costs (Balduzzi and Lynch, 1999), the absence of short-sales constraints
(Chan and Lakonishok, 1993) and lower adverse selection costs (Berkman
et al., 2005). As excessive downside correlations have been reported in US
equities (Ang and Chen, 2002) and international country indices (Longin and
Solnik, 1995, 2001),4 an application of asymmetric copulas should produce a
superior fit for these data sets (Low et al., 2013).

Table 1

List of data sets

Name Source

Full sample

N

Full sample

time period

Out of sample

time period

US industries Ken French’s website 17 07/1963–12/2010 07/1973–12/2010

This table shows the list of data sets used in our study and their sources. N denotes the total

number of risky assets within the portfolio.

1 We use the 1-month Treasury bill ratefrom Ibbotson Associates as provided on Ken
French’s website.

2 The 17 US industries consist of Food, Mines, Oil, Clothing,Durables, Chemicals,
Consumables, Construction, Steel, Fabricated Products,Machinery, Cars, Transporta-
tion, Utilities, Retail, Finance, and Other. As a robustness check, we have applied our
study on a portfolio of 12 US industries and can provide these results upon request.

3 For reasons of brevity, we do not report the descriptive statistics of our US industry
portfolio. These can be provided upon request.

4 We also apply our investigation on a portfolio of international country indices. The
results can be found in Appendix VII.

© 2017 AFAANZ

R. K. Y. Low/Accounting and Finance 5



3. Clayton canonical vine copula model

A copula5 allows the flexible modelling of the dependence structure and
marginals in a multivariate probability model. To understand the concept of
copulas intuitively, modelling a portfolio of assets requires modelling each asset
individually and the interactions between each asset. Modelling these interac-
tions is performed with the dependence structure, and modelling each
individual asset’s characteristics is performed in the marginals.
We apply the Clayton CVC that allows for lower (left) tail dependence that is

able to capture the increased downside correlations that often occur during a
bear market regime. Asymmetries within the marginals are captured using the
GARCH-GJR (Glosten et al., 1993) for volatility and Skew-T (Hansen, 1994)
model for skewness and kurtosis within the residuals.6

In Section 3.1, we show the existence of correlation asymmetries on the US
equities market and how the Clayton copula models this empirical artefact in
the returns distributions more accurately than Pearson’s correlation and the
VCV matrix. Section 3.2 describes the hierarchal structure of the vine copula
that forms a joint distribution of all assets within the portfolio.

3.1. Asymmetric correlations and the Clayton copula

As a range of financial literatures report (Longin and Solnik, 1995, 2001; Ang
and Chen, 2002) that negative returns are more prone to dependency than
positive returns within the equities asset class, we require a model that is able to
capture left (lower) tail dependence. Patton (2004) shows that the Clayton
copula is one of the simplest copulas that is able to model lower tail dependence
in financial time series, and Hong et al. (2007) use the Clayton copula in the
simulation approach to analyse the performance of a model-free statistical test
for identifying asymmetric correlations. The density of the bivariate Clayton
copula is shown in Equation (1).

Caðu1; u2Þ ¼ ð1þ aÞðu1 � u2Þ�1�a � u�a
1 þ u�a

2 � 1
� ��1=a�2

; ð1Þ

where a is the parameter controlling the degree of lower tail dependence.
Perfect dependence is obtained when a ? ∞, and a ? 0 implies independence.
Statistical tests of asymmetric dependence named ‘exceedance correlations’

are presented by Longin and Solnik (1995, 2001) and Ang and Chen (2002) who
use them to report left (lower) tail dependence on international and US equities
markets, respectively. The intuition of ‘exceedance correlations’ is that beyond
a certain threshold, the correlation behaviour across assets changes. Similar

5 A more detailed derivation of the CVC can be found in the Appendix I.

6 Details of themarginal models are provided in the Appendix II.
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ideas are applied in extreme value theory (EVT) where the behaviour of returns
in the tails of a distribution can be different from returns within the main body
of the distribution and therefore require different statistical assumptions and
modelling techniques (Embrechts et al., 1999, 2013). Patton (2004) and Chua
et al. (2009) apply exceedance correlation tests to indicate existence of
asymmetric correlations on their data sets, and propose different techniques
to manage them in the context of portfolio optimisation. Patton (2004) applies
copulas to forecast asymmetric dependence, and Chua et al. (2009) apply FSO
with a kinked utility function. Hong et al. (2007) provide a model-free test of
asymmetric correlations and show that incorporating asymmetries in invest-
ment decisions is of economic importance for investors with disappointment
aversion preferences.
The existing literature (Ang and Chen, 2002; Patton, 2004; Hong et al., 2007;

Chua et al., 2009) has applied statistical tests to prove the existence of
asymmetric correlations in our data set of US equities. Thus, we focus on
providing intuitive graphical analysis to explain the phenomenon of asymmet-
ric correlations based on the premise of ‘exceedance correlations’ where
correlation behaviour changes beyond an ‘exceedance threshold’ in Figures 1
and 2. If a portfolio of assets exhibits elliptical dependence, the behaviour of
returns beyond the exceedance thresholds is such that there should be an equal

Negative quadrant

Positive quadrant

Figure 1 Asymmetric dependence (correlation) in US equities market. This figure shows a scatter

plot of the returns of US industries vs US market returns from 1962 to 2010. For the US market

monthly returns, it shows thresholds of �0.2 (�20 percent) that denotes the negative quadrant, and

+0.2 (20 percent) as the positive quadrant. There are a higher number of points in the negative

quadrant than in the positive quadrant. Therefore, there are greater correlations in US market

downturns as opposed to market upturns, that is indicative of left (lower) tail dependence.
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number of points in the positive and negative quadrants with equal dispersion.
If a portfolio of assets exhibits left (lower) tail dependence, there will be a
greater number of points in the negative quadrant in a denser, concentrated
region compared to the positive quadrant (Embrechts et al., 2002).
Figure 1 is a scatter plot of monthly returns from 1962 to 2010 of 12 US

industry indices that together comprise the US equities market versus the
US S&P 500 index (market index). We apply exceedance thresholds of +0.2
(+20 percent) and �0.2 (�20 percent) for the US market index. Returns that
are beyond this threshold exhibit a different correlation structure than the
main body that lies within these thresholds. We denote the returns beyond
these thresholds as positive and negative quadrants, respectively. We can see
that in the negative quadrants, there are a greater number of points
compared to the positive quadrant. Thus, this indicates the existence of left
tail dependence in US equities. The lines are used to indicate that in the
positive quadrants, there is a greater dispersion of points compared to the
negative quadrant where it is more concentrated. Figure 2 shows that the
long-term behaviour of US industry indices comprising the entire US market
exhibits asymmetric correlations that are better modelled using a Clayton
copula in Figure 1b that allows for left tail dependence. The VCV that uses
Pearson’s correlation, as shown in Figure 1c, is inferior as it only measures
elliptical dependence.
Figure 3 is a graphical representation of correlations between a simulated

pair of assets (x1 and x2) based upon the Clayton copula and Pearson’s
correlation. As the Clayton copula parameter increases, the degree of

US market index vs US indices

Clayton copula parameter of 0.99

Pearson’s correlation of 0.5

Positive quadrant

Negative quadrant

(b)

(a)

(c)

Figure 2 US asymmetric dependence index. This figure shows the evolution of asymmetric

dependence across 48 industry indices that comprise the US equities market. By summating the

Clayton copula parameter across the entire vine copula, we obtain an aggregate indicator of

asymmetric dependence (correlation) across the US market. It is observed that asymmetric

dependence increases dramatically during notable crisis events in the US market.
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asymmetric correlations increases. Intuitively, in the negative returns quadrant,
we observe increased correlations, whereas in the positive returns quadrant, the
correlations between both assets remain dispersed. Alternatively, as the
Pearson’s correlation increases, we can see that both left and right tail
correlations increase equally. Thus, the Clayton copula is able to capture
asymmetric correlations that are observed to occur in the US and international
equities markets, whereas the traditional VCV that applies Pearson’s correla-
tion as a measure of dependence is unable to capture the effect of such
asymmetric correlations.

3.2. Canonical vine copula hierarchal structure

The CVC applies a hierarchal vine to link copula pairs together in a
multivariate probability model.7 If key assets that govern the interactions in the
investment portfolio can be identified during the modelling process, it is
possible to locate these variables towards the ‘root’ of the canonical vine. Thus,
we are able to build the canonical vine by ordering assets closer to the root of
the structure by their degree of correlation with other assets within the
portfolio.

Figure 3 Representation of asymmetric and elliptical dependence across two assets as given by the

Clayton copula parameter and Pearson’s correlation, respectively. This figure shows the evolution

of asymmetric and elliptical dependence as given by the Clayton copula and Pearson’s correlation

when the respective parameters increase. As the Clayton copula parameter increases from to 10,

asymmetric dependence (correlation) is observed where there is an increase in lower tail dependence,

but not upper tail dependence. As the Pearson’s correlation parameter increases, the dependence is

symmetric and the correlations are equal in the positive and negative quadrants.

7 For details regarding other vinestructures such as the D-vine, see Aas et al. (2009).

© 2017 AFAANZ

R. K. Y. Low/Accounting and Finance 9



Figure 4 shows a CVC structure for a hypothetical portfolio of N = 6 assets,
with a total of five trees, sk, where k = 1, . . . 5. Each tree, sk, contains 7 � k
nodes and 6 � k edges (edges are the connections between two nodes). The
label of each edge is the subscript of the copula pair density. For example, the
edge label 46|123 corresponds to the copula density 46|123. Each node in tree sk
determines the labels of the edges in tree sk+1. When two edges in sj both share
a common node, they become nodes in sj+1 and are joined by an edge. For
example, in s1, edges 12 and 13 share a common node in asset 1. Therefore in
s2, they both become nodes and share the edge 23|1. Thus, the entire model’s
density is decomposed to N (N � 1)/2 edges and each asset’s marginal
densities. For example, the asymmetric dependence structure characterised by a
Clayton CVC model for a portfolio of six assets requires the parameterisation
of N (N � 1)/2 variables.
As we consider asset 1 to be a key asset that is related to all other assets

within the portfolio, we place it at the ‘root’ of the CVC structure in tree s1.
We use five bivariate copulas to capture the dependence structure between
asset 1 and each asset from 2 to 6. Asset 2 is considered to be the second
most important asset governing interactions within the portfolio. Thus, s2
captures the relationships between asset 2 and assets 3 to 6, conditionally
upon asset 1. For example, 23|1 denotes the bivariate copula between assets

Figure 4 Canonical vine copula hierarchal structure for six asset portfolios. This figure shows the

canonical vine copula structure for a hypothetical portfolio of six assets. The dependence structure

is comprised of a hierarchal set of 5 trees, 15 edges and 20 nodes. As each edge corresponds to a

bivariate copula density, there are a total of 15 bivariate copulas. Tree s1 consists of five bivariate
copulas of asset 1 and each asset from 2 to 6. Tree s2 consists of four bivariate copulas of asset 2

with each asset 3 to 6, based conditionally upon asset 1. Tree s3 shows the modelling of three

bivariate copulas of asset 3 with each asset 4, 5 and 6, based conditionally upon assets 1 and 2. Tree

s4 shows the modelling of two bivariate copulas of asset 4 with each asset 5 and 6, based

conditionally upon assets 1, 2 and 3. Tree s6 consists of a bivariate copula between assets 5 and 6,

based conditionally upon assets 1 to 4.
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2 and 3, based conditionally upon asset 18. Thus, we order our assets
accordingly such that the most important asset that is believed to govern
interactions within the portfolio belongs at the ‘root’ of the CVC. Other
assets placed close to the ‘root’ of the CVC are done so with decreasing
importance within the portfolio.
In our implementation, we follow Low et al. (2013) in designing the

canonical vine structure by placing assets that have the highest degree of linear
correlation with all the other assets in the sample window at the root of the
structure. Specifically, this is performed by calculating the average of the
Pearson’s correlation matrix between all assets during the sample window as
shown in Equation 2.

�Hy ¼ 1

N

XN
x¼1

hxy; ð2Þ

where hxy is an N 9 N matrix of the Pearson’s correlation parameter of the
monthly returns between each pair of assets x and y that are both part of
our portfolio of N assets. Θy is a N 9 1 matrix where each element is the
sum of the Pearson’s correlation parameter of y with all other assets x. Θy is
sorted in descending order to facilitate the process of placing assets with the
highest value of correlations closest to the root of the canonical vine
structure. For example, the largest value in Θy has the highest absolute linear
correlation with all other assets within the portfolio during the sample
window and is placed at the root of the hierarchal structure of the canonical
vine.

8 By construct, C23|1 is different from C23. The vine copula approach uses conditional
pair-copulas that are assumed to depend on conditioning variables indirectly through
the conditional margins. Hobæk Haff et al. (2010) show that the construction of the vine
based on pair-copulas is a good approximation, even when the simplifying assumption is
far from being fulfilled by the actual model. Acar et al. (2012) discuss that although the
simplifying assumptions can be misleading, they agree that it is the only methodology
that currently exists that offers statisticians great flexibility in modelling multivariate
dependence for high dimensions. Therefore, the vine copula continues to be heavily
applied in applied financial research. For studies where vine copulas are used to analyse
statistical and time series properties of financial returns, see Heinen and Valdesogo
Robles (2009), Nikoloulopoulos et al. (2012), Dissmann et al. (2013) and Brechmann
et al. (2012). The vine copula has been used extensively in a variety of practical
applications in finance such as modelling asymmetric dependence for investors who seek
to minimise conditional value-at-risk (CVaR) (Low et al., 2013), forecasting VaR
(value-at-risk) (Weib and Supper, 2013; Zhang et al., 2014), risk management
(Brechmann and Czado, 2013; Brechmann et al., 2014) and exchange rates (Czado
et al., 2012).
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4. Full-scale optimisation

In practice, portfolio optimisation invokes several simplifications such as
ignoring higher-order moments, using parameter estimates rather than predic-
tive returns, maximising approximations of the expected utility, and estimation
error (Adler and Kritzman, 2007; Hagstr€omer et al., 2008; Harvey et al., 2010).
Such simplifications can lead to inferior investment decisions as behavioural
finance studies show that managing higher moments in investment portfolios is
of increasing importance to investors (Kahneman and Tversky, 1979; Thaler
et al., 1997; Odean, 1998) and is crucial to minimising exposure to downside
risk (Chua et al., 2009; Low et al., 2013).
We apply FSO9 as a potential solution to the first three simplifications and

address the issue of estimation error in expected returns by applying a CVC
model that incorporates asymmetries in the dependence structure and
marginals. We seek to demonstrate the improvement in performance outcomes
for ‘sophisticated’ investors who are able to exploit the persistence of
correlation asymmetries in equities returns to produce superior estimates of
expected returns versus ‘na€ıve’ investors who use unadjusted historical
sampling windows. Our study applies FSO to these different estimates of
expected returns on portfolio choice for investors with varying risk preferences
to further analyse the outcomes of risk-seeking versus conservative investment
behaviour when asymmetric estimates are applied.
We explore a range of alternative utility functions that exhibit preferences for

higher moments (e.g. kinked power) and provide their functional forms in
Table 2. Graphical representations of the kinked power, bilinear and S-curve
utility functions for a range of parameters are shown in Figures 5, 6 and 7,
respectively.
Our study investigates a total of 30 utility functions10 for each investment

portfolio. However for brevity, we report the results for 27 portfolios as the
results for the kinked power utility function where c = 1 and k = 1 are
quantitatively similar to those for the bilinear utility function when p = 1.
Table 3 provides details of the parameters used for each utility function, the
number of utility function specifications under investigation and the
parameters applied in a range of extant FSO studies.11 As each utility

9 Details on the implementation of FSO are given in Appendix III. We use the acronym
FSO as this is the label applied for the approach in the literature (Adler and Kritzman,
2007; Hagstr€omer et al., 2008; Chua et al., 2009; Hagstr€omer and Binner, 2009;
Kritzman, 2011).

10 A detailed description of the utility functions explored is given in Appendix IV.

11 We report a range of parameters applied in FSO studies by Cremers et al. (2003),
Adler and Kritzman (2007), Hagstr€omer et al. (2008), Hagstr€omer and Binner (2009)
and Chua et al. (2009) for each of the utility functions investigated in our study.
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function requires different sets of parameters, we cover a range of reasonable
values to allow for a meaningful comparison across all utility functions
investigated.

Table 2

Utility functions investigated

Utility type Functional form Conditions

Kinked Power ln(1 + x) x� h; c ¼ 1

ln(1 + h � k[h � x]) x\h; c ¼ 1

[(1 + x)1�c � 1](1 � c)�1 x� h; c[ 0

[(1 + h � k[h � x])1�c � 1](1 � c)�1 x\h; c[ 0

Bilinear ln(1 + x) x ≥ h
P(x � h) + ln(1 + h) x < h

S-curve �Aðh� xÞs1 x ≤ h
þBðx� hÞs2 x > h

This table shows the list of utility functions. Portfolio returns are denoted by x. The critical

level of returns that is the inflection point for S-curve utility and the kink point for bilinear

and kinked power utility is h. For bilinear utility, P is the penalty level on sub-kink returns. In

kinked power utility functions, c is the degree of relative risk aversion (RRA), and k is the

degree of loss aversion. For S-curve utility functions, s1 (s2) and A (B) respectively determine

the shape and the magnitude of the downside (upside) region of the function.
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Figure 5 Kinked power utility – illustrative cases. This figure illustrates kinked power utility

functions with varying values for the degree of relative risk aversion (c) and loss aversion (k). The
kink point (h) is set at 0 percent.
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5. Empirical testing procedure

Our research method simulates a typical scenario faced by portfolio
managers in a tactical asset allocation strategy where the portfolio is
dynamically rebalanced each month to maximise a selected utility function as
new information arrives from each asset (Brands et al., 2006; Hatherley and
Alcock, 2007; Chiang and Zhou, 2009). Specifically, our approach estimates
expected returns only on the basis of information available at the time of
portfolio construction; thus, every estimate is out-of-sample. We use rolling-
sampling windows where if the entire data set of asset returns consists of T
months, the out-of-sample period consists of T – W, where W is the size of the
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Figure 6 Bilinear utility – illustrative cases. This figure illustrates bilinear utility functions with

varying values for the penalty (P) applied to the subkink returns. The kink point (h) is set at 0
percent.
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Figure 7 Modelling asymmetric dependence (correlation) with copulas. This figure shows (a) US

market scatter plot, (b) scatter plot produced by a Clayton copula parameter of 0.99 and (c) scatter

plot produced with a Gaussian copula with correlation parameter of 0.5. The Clayton copula

exhibits a larger number of points in the negative quadrant than in the positive quadrant, thus

indicating its ability to model left (lower) tail dependence. Elliptical dependence has an equal

number of points in both the positive and negative quadrants and is unable to allow for asymmetric

dependence. Thus, the Clayton copula leads to an improved model of the US market due to its

ability to model asymmetric dependence.
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sample window of 120 months.12 During each month t, starting from
t = W + 1, data within the previous W months are used to generate expected
returns. To evaluate the degree of estimation error, we generate estimates of
expected returns in two ways. First, as a benchmark, expected returns are
simply unadjusted historical rolling sample windows that are input into FSO.
Second, to reduce estimation error, the same rolling sample windows are used
to parameterise the model estimates of expected returns. Once the model is
parameterised, we use Monte Carlo simulations to generate 10,000 returns for
each asset within the portfolio. The sample of simulated returns is then used as
an input into the optimisation models. To summarise, as our portfolio consists
of 17 assets, our model simulated 170,000 returns per month. Our out-of-
sample period consists of 450 months; thus, the total size of our simulation
data set has a total of 76.5 million returns observations. We then compare the
portfolio performance of generating expected returns between using unadjusted
historical samples or model estimates of expected returns incorporating
asymmetric dependence across a range of utility functions.

6. Results

First, we show that the Clayton CVC is able to capture changes in
asymmetric dependence in the US market and this can be represented

Table 3

Utility function parameters

Utility

function

Number of utility

function

specifications Parameter values

Parameter values of

prior FSO studies

Kinked

power

12 h = 0% �2%, �5% �1.5% ≤ h ≤ 0.5%

c = 1, 3; k = 1, 3 1 ≤ c ≤ 6; 1 ≤ k ≤ 3

Bilinear 9 h = 0%, �2%, �5% �5% ≤ h ≤ 0.5%

P = 1, 3, 5 1 ≤ p ≤ 10

S-curve 9 h = 0%, �2%, �5% �5% ≤ h ≤ 0%

B/A = 1, 2, 3; s1 = s2 = 0.5 1 ≤ B/A ≤ 3; 0.1 ≤ s1, s2 ≤ 0.5

This table shows the parameters applied to the utility functions that we optimize for in our

study. As a result of the selected combination of parameters, we show the total number of

combinations of utility functions investigated. We also report the range of parameter values

applied in prior FSO studies.

12 Our approach of using a 10 year rolling window follows the empirical research
method applied in the portfolio optimisation literature (DeMiguel et al., 2009; Fletcher,
2011; Tu and Zhou, 2011; Low et al., 2013, 2016). Volatility clustering effects in the
marginals are captured through the GARCH-GJR model and skewness and kurtosis by
our application of the Skew-T model. Our results are robust to the use of 20 year
(240 month) rolling windows and can provide these results upon request.
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graphically in terms of a US Asymmetric dependence index. Second, we
measure out-of-sample performance by reporting a set of risk-adjusted return
(economic measures) metrics and the indices of acceptability (consensus
measures) for our data sets.13 For descriptive ease, we denote alternative utility
functions as follows. Kinked utility specifications are generally indicated by
“K”, and subscripts identify c and k, respectively. For example, “K1,3” denotes
a kinked utility function with c = 1 and k = 3. Bilinear utility functions are
generally indicated by “B”, and the subscript identifies the order of P. For
example, “B3” denotes a bilinear utility function where P = 3. S-curve utility
specifications are generally indicated by ‘S’, and the subscript identifies the
ratio of B/A. For example, “S3” denotes an S-curve utility function where B/
A = 3. When the kink/inflection point is such that h = �2 percent, this will be
denoted as ‘h�2 percent’.

6.1. US asymmetric dependence index

Figure 2 displays a US Asymmetric Dependence Index. The Clayton copula
parameter is extracted from each pair as defined within the hierarchal structure
of the CVC within the portfolio of assets and aggregated to obtain a measure of
asymmetric correlations across the entire portfolio. We apply the monthly
returns from US industry indices that comprise the US market portfolio, and
we use 10 year rolling-sampling windows to parameterise the Clayton CVC.
Thus, the US Asymmetric Dependence Index is a 1 month-ahead forecast
based on 10 year monthly returns data that are used to parameterise the
Clayton CVC. During the period of 1963–2010, the degree of asymmetric
correlations has decreased over time. However, during notable crisis periods in
the US markets, sharp increases in the degree of asymmetric correlations across
US industries are observed.
As can be seen from the US Asymmetric dependence index in Figure 2, the

Clayton CVC can be applied in a similar manner; however, our study focuses
on using the Clayton CVC to generate forecasts of returns to model the
persistence of asymmetric correlations that are vital in reducing risk exposures
in investment portfolios. Adler and Kritzman (2007) and Hagstr€omer et al.
(2008) find that the successful out-of-sample performance of FSO is dependent
upon the persistence of the properties of the sample return distributions used to
calculate the optimal asset allocations. Thus, we show that the Clayton CVC is
able to capture the persistence in asymmetric correlations that improves the
out-of-sample performance outcomes in the FSO methodology (Figure 8).

13 More details regarding our choices of economic and consensus measures can be found
in Appendix V. Selection of measurements for portfolio performance is important for
rating different funds and portfolio strategies (Gerrans, 2006).
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6.2. Risk-adjusted return metrics

We apply a range of popular risk-adjusted return metrics to provide
economic intuition regarding the benefits of using asymmetric estimates for
different utility functions. We report the Sharpe ratio as it is a widely used
measure of portfolio performance in industry and academia, as well as other
popular downside risk-adjusted measures (also known as gain–loss ratios) such
as the Omega ratio (Keating and Shadwick, 2002) and the Sortino ratio
(Sortino and Van Der Meer, 1991). In addition, to evaluate the performance
relative to extreme downside exposure, we calculate the ratio of the average
returns of the portfolio strategy relative to the 1 percent level of CVaR
(denoted as Mean/CVaR), that is a coherent risk-adjusted return on capital.

6.2.1. US industry setting

Table 4 shows risk-adjusted returns for the portfolio of 17 US industry
indices. The performance for the different utility functions is much poorer when
historical returns are applied compared to asymmetric estimates. The difference
is greatest for the S-curve utility functions that produce negative returns when
historical samples are used. Generally, all utility functions are significantly
improved across all risk-adjusted metrics when asymmetric estimates are used.
We find that kinked power utility functions exhibit the best performance with
historical returns. When asymmetric returns are applied, bilinear and S-curve
utility functions exhibit the best performance and improvements, respectively.
In Panel A (kinked power utility), the most conservative strategies with the

highest loss aversion parameters, K3,3 and K1,3 produce the highest risk-
adjusted returns for all values of h. For K3,3 (K1,3) they produce Sharpe ratios
ranging from 5.85 to 8.27 (5.86 to 6.21). They also exhibit the least
improvement when asymmetric estimates are used, where K3,3 (K1,3) produces
Sharpe ratios ranging from 8.65 to 10.61 (10.59 to 10.74). On the other hand,
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Figure 8 S-curve utility – illustrative cases. This figure illustrates S-curve utility functions with

varying values for B/A. The inflection point (h) is set at 0 percent. The shape and magnitude of the

downside (upside) region on the left of the inflection point are given by s1 (s2) and A (B),

respectively. Both s1 and s2 are set to 0.5.
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Table 4

Risk-adjusted return metrics for FSO utility functions – US industry indices analysis

Utility

parameters Sharpe ratio Omega ratio Sortino ratio Mean
CVaR

h
(%)

Risk

parameters

Hist.

sample

Asymm.

est.

Hist.

sample

Asymm.

est.

Hist.

sample

Asymm.

est.

Hist.

sample

Asymm.

est.

Panel A: Kinked power utility

0 K1,3 6.04 10.59 1.18 1.33 8.56 15.30 1.82 2.92

K3,3 7.11 8.65 1.21 1.27 10.29 13.21 2.32 2.90

K3,1 1.07 10.98 1.03 1.36 1.50 16.20 0.30 3.00

�2 K1,3 5.86 10.64 1.17 1.33 8.11 15.45 1.57 2.94

K3,3 8.27 10.61 1.24 1.34 11.94 15.66 2.64 3.08

K3,1 1.07 11.64 1.03 1.38 1.50 17.26 0.30 3.17

�5 K1,3 6.21 10.74 1.19 1.34 8.88 16.04 1.78 2.84

K3,3 5.85 9.55 1.17 1.29 8.32 13.90 1.75 2.69

K3,1 1.07 11.44 1.03 1.37 1.50 16.95 0.30 3.14

Panel B: bilinear utility

0 B1 �4.03 15.75 0.89 1.53 �5.36 25.10 �1.04 5.47

B3 3.95 12.83 1.12 1.41 5.43 19.00 1.08 3.56

B5 4.96 12.29 1.14 1.39 7.13 17.98 1.61 3.42

�2 B1 �4.02 15.72 0.89 1.53 �5.35 25.04 �1.04 5.46

B3 5.62 12.37 1.17 1.40 7.76 18.32 1.45 3.30

B5 8.11 11.79 1.24 1.37 11.93 17.24 2.79 3.34

�5 B1 �4.08 15.68 0.89 1.53 �5.42 24.96 �1.06 5.44

B3 5.27 12.09 1.16 1.40 7.46 17.93 1.44 3.03

B5 5.75 11.35 1.17 1.35 8.06 16.58 1.70 3.04

Panel C: S-curve utility

0 S3 �3.13 9.57 0.92 1.30 �4.22 14.31 �0.94 2.86

S2 �3.50 12.44 0.91 1.41 �4.69 19.19 �0.98 3.64

S1 �3.45 14.91 0.91 1.51 �4.69 23.81 �1.03 4.99

�2 S3 �3.67 13.51 0.91 1.46 �4.97 20.74 �1.05 3.94

S2 �3.84 13.54 0.90 1.46 �5.12 20.83 �1.06 4.04

S1 �1.76 12.03 0.95 1.43 �2.36 18.67 �0.49 3.43

�5 S3 �0.92 14.00 0.97 1.50 �1.26 22.20 �0.26 4.18

S2 �4.11 11.30 0.89 1.40 �5.36 17.92 �1.06 3.77

S1 1.37 13.74 1.04 1.47 1.90 21.43 0.40 3.96

This table shows the Sharpe, Omega, Sortino, and Mean/CVaR ratios for investors with

kinked power (Panel A), bilinear (Panel B) and S-curve (Panel C) utility functions for a

portfolio of 17 US industry indices when historical samples or asymmetric estimates of

expected returns are applied. The kink/inflection point of the utility function is denoted by h.
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K3,1 that exhibits a Sharpe ratio range of around 1.07 is improved to 10.98 to
11.64. Therefore, as asymmetric estimates impose a degree of conservativeness
in the portfolio decision process, K3,1, that is the most risk-seeking of all the
kinked power utility functions explored, benefits the most.
In Panel B (bilinear utility), the two best performing bilinear utility functions

are B3 and B5, and when historical returns are used, the resulting Sortino ratio
ranges from 5.43 to 7.76, and 7.13 to 11.93, respectively. When asymmetric
estimates are used, the Sortino ratio of B3 improves to a (B5) range of 17.93 to
19.00 (16.58 to 17.98), thus exhibiting substantial improvement. Although B1 is
the poorest performing utility function and generates negative returns with
historical returns samples (Sortino ratio between �5.35 and �5.42), it exhibits
the largest gains and outperforms the two more loss-averse counterparts when
asymmetric returns are accounted for (Sortino ratio between 24.96 and 25.10).
Thus, the weaker the degree of loss aversion, the greater the benefits to be
gained from using asymmetric returns estimates.
In Panel C (S-curve utility), the best (worst) performing S-curve utility

functions when historical returns are applied is S1 (S2). However, Panel C
differs from the other panels as, regardless of the value of h, the degree of
improvement with the application of asymmetric returns across all S-curve
utility functions is very similar. All of them experience a large magnitude of
improvement such that from being the poorest performing set of utility
functions with historical returns (Sharpe ratios of �4.11 to 1.37), they
outperform the kinked power utility functions when asymmetric returns
estimates are used (Sharpe ratios of 9.57 to 14.91). Therefore, we still observe
that the most (least) conservative strategies perform much better when
historical returns (asymmetric estimates) are applied.

6.3. Indices of acceptability performance outcomes

Cherny and Madan (2009) state that a measure of trading performance
should satisfy the following axioms: (i) quasi-concavity; (ii) monotonicity; (iii)
scale invariance; (iv) Fatou property; (v) law invariance; (vi) consistency with
second-order stochastic dominance; (vii) arbitrage consistency; and (viii)
expectation consistency. Several popular risk-adjusted portfolio performance
measures such as the Sharpe ratio, gain–loss ratios (e.g. Sortino ratio) and
coherent risk-adjusted return on capital (e.g. Mean/CVaR) are able to satisfy
some but not all of the above axioms. Thus, Cherny and Madan (2009)
recommend the AIMIN, AIMAX, AIMINMAX and AIMAXMIN as
promising new measures for investment performance evaluation as they are
able to satisfy all eight axioms, where ‘AI’ denotes acceptability index. Eberlein
and Madan (2009) apply the indices of acceptability as a performance measure
for hedge funds. In addition, indices of acceptability have been used to price
and optimally hedge complex contingent claims and price corporate securities
(Madan, 2010; Madan and Schoutens, 2011).
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6.3.1. US industry setting

Table 5 shows a range of indices of acceptability for the portfolio of 17 US
industry indices. We find that risk parameters have a greater impact than the
kink/inflection points.
In Panel A (kinked power utility functions), we find that kinked utility

functions for K1,3 and K3,3 produce greater indices of acceptability when
asymmetric estimates (i.e. AIMAXMIN ranging from 2.10 to 2.63 and 1.98 to
2.35 for K1,3 and K3,3, respectively) are used compared to historical samples (i.e.
AIMAXMIN ranging from 2.50 to 2.91 and 2.61 to 2.85 for K1,3 and K3,3,
respectively). Both utility functions exemplify investors who are more averse to
losses. The greatest enhancements are shown inK3,3 due to a greater relative risk
aversion (RRA). Improvements are visible for K3,1 for AIMAX and AIMIN-
MAX metrics. For cases where h�2 percent and h�5 percent, we find similar results
where enhancements are visible forK3,3 for all indices and forK3,1 in the AIMAX
and AIMINMAX metrics. Across all values of h, the least (most) conservative
investor, K3,1 (K3,3), produces the highest (lowest) values for the indices.
In Panel B (bilinear utility functions), where h0 percent and h�2 percent, we find

that bilinear utilities of B1 and B5 are improved across all indices when
asymmetric returns are used. Where h�5 percent, this result holds for B1. B3 only
demonstrates improvements for the AIMAX and AIMINMAX metrics in the
h0 percent case. Therefore, the greatest (least) improvements are for B3 (B1). For
B3, the AIMAXMIN metrics are 2.02 to 2.77 with historical returns and it
improves to 2.58 to 3.06. For B1, the AIMAXMIN metrics are 4.50 with
historical returns and it improves to 4.66 with asymmetric estimates. Across all
values of h, the highest (lowest) values for the indices are produced by the least
(most) conservative investor, B1 (B5). For B1, the AIMAXMIN produced is
4.50, whereas for B5 it ranges from 2.01 to 2.43.
In Panel C, S-curve utility functions produce the highest indices compared to

the other utility functions. For S3 and S2, improvements are found for h0 percent

in AIMAX and AIMINMAX and in h�2 percent and h�5 percent for all indices.
The use of asymmetric estimates demonstrates enhancements in S1 for all
indices where h0 percent and for AIMAX and AIMINMAX when h�5 percent. S3

(S1) exhibits the largest (lowest) indices of acceptability. For S3, AIMAXMIN
ranges from 3.14 to 5.10 with historical samples and 3.76 to 4.91 with
asymmetric estimates. For S1, AIMAXMIN ranges from 2.33 to 3.85 with
historical samples and 2.72 to 4.09 with asymmetric estimates. Thus,
asymmetric returns estimates mainly benefit less conservative investors who
have higher preferences for upside relative to downside gains.

6.4. Summary of overall portfolio performance

Regardless of whether historical returns or asymmetric estimates are used, S-
curve utility functions produce the highest indices of acceptability and the
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Table 5

Indices of acceptability results for FSO utility functions - US industry indices

Utility

parameters AIMIN AIMAX AIMINMAX AIMAXMIN

h
(%)

Risk

parameters

Hist.

sample

Asymm.

est.

Hist.

sample

Asymm.

est.

Hist.

sample

Asymm.

est.

Hist.

sample

Asymm.

est.

Panel A: Kinked power utility

0 K1,3 5.90 6.98 17.59 18.35 24.99 25.99 2.10 2.50

K3,3 5.59 7.20 17.29 18.15 24.59 25.66 1.98 2.61

K3,1 8.98 9.50 19.21 20.13 26.97 28.26 3.35 3.52

�2 K1,3 6.03 7.29 17.48 18.77 24.81 26.57 2.14 2.61

K3,3 5.79 7.44 17.44 18.35 24.78 25.93 2.05 2.70

K3,1 8.98 9.50 19.21 20.13 26.97 28.26 3.35 3.52

�5 K1,3 7.26 8.03 18.40 19.13 26.02 26.99 2.63 2.91

K3,3 6.55 7.84 17.90 19.14 25.37 27.02 2.35 2.85

K3,1 8.98 9.50 19.21 20.13 26.97 28.26 3.35 3.52

Panel B: Bilinear utility

0 B1 11.51 12.10 20.49 21.91 28.43 30.47 4.50 4.66

B3 6.23 7.20 17.83 18.49 25.30 26.17 2.22 2.58

B5 5.68 6.73 17.53 18.13 24.93 25.70 2.01 2.40

�2 B1 11.50 12.10 20.47 21.89 28.40 30.44 4.50 4.66

B3 6.14 7.51 17.31 18.64 24.55 26.35 2.19 2.71

B5 5.71 6.95 17.26 18.45 24.53 26.14 2.02 2.48

�5 B1 11.51 12.09 20.49 21.89 28.44 30.45 4.50 4.66

B3 7.62 8.38 18.59 19.26 26.25 27.14 2.77 3.06

B5 6.78 7.63 18.10 18.85 25.64 26.64 2.43 2.75

Panel C: S-curve utility

0 S3 12.76 12.47 21.17 21.69 29.21 30.06 5.10 4.91

S2 12.31 12.47 21.28 22.07 29.47 30.61 4.85 4.88

S1 10.15 10.68 19.98 20.54 27.92 28.65 3.85 4.09

�2 S3 10.82 12.14 20.51 21.71 28.61 30.14 4.13 4.75

S2 10.27 11.52 19.94 21.65 27.85 30.12 3.91 4.50

S1 7.84 7.71 18.63 18.58 26.26 26.22 2.88 2.81

�5 S3 8.40 9.77 18.54 19.66 26.05 27.47 3.14 3.76

S2 7.76 8.28 18.36 18.30 25.89 25.72 2.85 3.10

S1 6.50 7.55 17.34 18.85 24.56 26.65 2.33 2.72

This table shows the indices of acceptability metrics of AIMIN, AIMAX, AIMINMAX, and

AIMAXMIN for investors with kinked power (Panel A), bilinear (Panel B) and S-curve

(Panel C) utility functions a portfolio of 17 US industry indices when historical samples or

asymmetric estimates of expected returns are applied. The kink/inflection point of the utility

function is denoted by h.
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lowest risk-adjusted returns. Alternatively, kinked power utility functions
produce the lowest indices of acceptability but the highest risk-adjusted returns.
Bilinear utility functions fall in the middle of this spectrum as they do not allow
for any changes in the utility function above the kink point, whereas kinked
power utility functions allow changes in RRA. S-curve utility functions have
higher risk-seeking preferences compared to kinked power utility functions.
Therefore, the direction of trades taken by investors with S-curve utility seems
preferable, although this may lead to lower economic outcomes. Alternatively,
the direction of trades taken by more conservative individuals (i.e. kinked
power) leads to economic benefits. We find that this result holds even within
each category of utility functions explored where the more conservative the
investor, the higher the economic gains and the lower the indices of
acceptability.
Regarding the impact of using asymmetric estimates, we find that kinked

power utility functions exhibit the largest and lowest improvements for the
indices of acceptability and risk-adjusted returns, respectively. Alternatively, S-
curve utility functions have larger enhancements for risk-adjusted returns and
lower enhancements for the indices. The same observations are found within
the utility functions where asymmetric returns produce larger improvements in
the risk-adjusted metrics for less conservative investors. Thus, the greatest
benefit of asymmetric estimates is improving the economic outcomes of
investors as the impact on the indices of acceptability is much smaller in
comparison.
Therefore, based on our analysis, if the investor lacks the ability to

incorporate distributional asymmetries into their portfolio management
process, a more conservative approach is more likely to generate more
successful economic outcomes in the long term. One of the explanations given
by Chua et al. (2009) is that utility functions that exhibit higher levels of loss
aversion are able to reduce correlation asymmetry and provide greater
downside diversification and upside unification. Therefore, a less conservative
investor might execute trades that can appease a greater set of consenting
measures (as shown by the indices of acceptability) but suffer economically.
However, using asymmetric returns estimates are able to combine the objectives
of both preferences in a successful manner across a variety of utility functions
and data sets.

7. Conclusion

In asset allocation and funds management applications, Kritzman (2011)
recommends the use of full-scale optimisation (FSO) as a suitable alternative to
mean-variance (MV) optimisation to account for non-normal returns distri-
butions and investors’ preferences for higher moments. Although several
papers show that FSO demonstrates enhanced performance benefits for
investors with higher-moment preferences compared to MV optimisation
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(Adler and Kritzman, 2007), estimation error continues to persist in out-of-
sample applications when historical asset returns are applied (Hagstr€omer
et al., 2008; Hagstr€omer and Binner, 2009).
Our work applies the Clayton canonical vine copula (CVC) to model

asymmetric dependence across a portfolio of assets. By summating the Clayton
copula parameter across the vine model consisting of US industry asset returns,
we create a US Asymmetric Dependence Index that shows sharp increases in
correlation asymmetry during notable crisis events in US financial markets.
Based on these findings, in a tactical asset allocation exercise using FSO, we
reduce estimation error by exploiting the persistence of distributional asym-
metries in estimation of expected returns. More specifically, we characterise
asymmetries in asset correlations, volatility and residuals within the marginal
distributions via the Clayton CVC (Aas et al., 2009), GARCH-GJR (Glosten
et al., 1993) and skewed Student t (Skew-T) (Hansen, 1994), respectively, in an
out-of-sample study. Our sample period spans several decades across portfolios
of international country and US industry indices. We explore the kinked
power, bilinear and S-curve (Kahneman and Tversky, 1979) utility functions
for a range of risk parameters to capture behavioural biases that are
increasingly evident in investors (Benson et al., 2007; Gerrans et al., 2015;
Hoffmann and Post, 2015). We evaluate the performance benefits of estimating
returns asymmetries using the indices of acceptability (Cherny and Madan,
2009) to provide an indication of the consensus regarding the direction of
trades, and a range of risk-adjusted return metrics to provide economic
intuition.
Thus, our work builds upon studies by Hatherley and Alcock (2007) and

Durand et al. (2010) who have applied copulas in asset allocation and risk
management analysis, respectively. Hatherley and Alcock (2007) use a Clayton
copula to forecast estimates of expected returns in minimising conditional
value-at-risk (CVaR) for a small portfolio of three assets on the Australian
Stock Exchange (ASX). Durand et al. (2010) derive a copula that exhibits
features of both the Frank and Gumbel copulas to examine the flight-to-quality
effect between bonds and equities.
We find that when historical returns are applied, the less conservative

investors (i.e. S-curve investors) generate poorer economic outcomes with
Sharpe ratios between �4.11 and 1.37 compared to the more cautious (i.e.
kinked power investors) with Sharpe ratios between 1.07 and 8.27. However,
less conservative investors who are more risk-seeking, with a preference for
positive skewness, score higher on the indices of acceptability. As measured by
AIMAXMIN, the S-curve investors have a range of 2.72 to 4.91 and the kinked
power investors have a range of 2.50 to 3.52. Application of asymmetric returns
improves performance outcomes as measured by risk-adjusted returns.
Investors with S-curve preferences have the highest economic benefits from
using asymmetric returns estimates compared to the more loss-averse investors
with kinked power and bilinear utility functions. We find that S-curve investors
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have a Sharpe ratio range of �4.11 to 1.37 using historical samples that
improves to 9.57 to 14.91 with asymmetric estimates.
Chua et al. (2009) find that optimising a bilinear utility function results in

more enhanced performance outcomes due to the reduction in correlation
asymmetries within the portfolio. Our investigation supports their analysis as
we find that loss-averse investors result in more successful economic outcomes
in the long term based on the use of historical returns samples. We find that
asymmetric returns estimates largely benefit investors who exhibit low levels of
loss aversion and are more risk-seeking in their approach to investments (i.e. S-
curve). Intuitively, estimation models that incorporate returns asymmetries are
analogous to an investor having a conservative view about future returns.
Therefore, there are reduced benefits to an investor who has a loss-averse
approach to portfolio optimisation (i.e. bilinear, kinked power) as any
correlation asymmetries that exist have already been exploited in the
estimation process. Therefore, if one is unable to account for returns
asymmetries due to the sophistication of the mathematical modelling required,
the best approach to achieve a reasonably successful economic outcome in the
long run is to exercise a degree of caution when investing. Otherwise, if an
investor has the capability to model correlation asymmetries in their estimation
process, they are able to improve the performance outcomes for a wide variety
of investor preferences.
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Appendix I. Dependence model (vine copula)

Conceptually, a copula is a multivariate distribution that combines two (or
more) given marginal distributions into a single joint distribution.14 Archime-
dean copula models are commonly used as they may incorporate flexible range
of dependence structures. However, they consist of one-parameter or two-
parameter models of the dependence structure regardless of the number of
assets. This might be sufficient for a model of two or three assets, but more
complex models will likely require more flexible parameterisation.
Flexibly modelling dependence is straightforward for bivariate data but is far

more difficult for higher dimensions as the choice of copulas then becomes
limited to Gaussian or Student t copulas that only capture elliptical
dependence. The Gaussian copula lacks tail dependence, and even though
the multivariate Student t copula is able to generate different tail dependence15

for each pair of variables, it is restricted to have the same upper and lower tail
dependence.
The work of Bedford and Cooke (2002) and that of Aas et al. (2009) have led

to the development of flexible and scalable copula models, also known as the
canonical vine copula (CVC). The CVC allows us to overcome the limitations
of traditional copula models by modelling dependence using simple local
building blocks (pair-copulas) based on conditional independence.
A joint probability density function of n variables u1, u2, . . ., un can be

decomposed without loss of generality by iteratively conditioning where

fðu1; u2; . . . ; unÞ ¼ fðu1Þ � fðu2ju1Þ � fðu3ju1; u2Þ � � � fðunju1; . . . ; un�1Þ: ðI:1Þ

Each of the factors in this product can be decomposed further using
conditional copulas. For example, the first conditional density can be
decomposed into the copula function c12 (the copula linking u1 and u2)
multiplied by the density of u2 such that

fðu2ju1Þ ¼ c12½F1ðu1Þ;F2ðu2Þ�f2ðu2Þ; ðI:2Þ

where Fi(.) is the cumulative distribution function (cdf) of ui. The joint density
of the three-dimensional case can be decomposed in a hierarchal construction

14 Nelsen (2006) and Joe (1997) both provide an excellent introduction to copula theory.

15 Tail dependence for a multivariate Student t copula is a function of the correlation
and degrees of freedom.
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based on pair-copulas with conditional cdf as arguments, and marginal
densities as

fðu1; u2; u3Þ ¼ c23j1ðF2j1ðu2ju1Þ;F3j1ðu3ju1Þ;u1Þc12ðF1ðu1Þ;F2ðu2ÞÞ
c13ðF1ðu1Þ;F3ðu3ÞÞf1ðu1Þf2ðu2Þf3ðu3Þ:

ðI:3Þ

We assume that the pair-copulas are independent of the conditioning
variables, except through the conditional distributions as shown in Equa-
tion (I.4). Hobæk Haff et al. (2010) show that this practical approximation
remains reasonably accurate and several benefits such as improved efficiency,
flexibility and robustness of the model inferencing process apply.

fðu1; u2; u3Þ ¼ c23j1ðF2j1ðu2ju1Þ;F3j1ðu3ju1ÞÞc12ðF1ðu1Þ;F2ðu2ÞÞ
c13ðF1ðu1Þ;F3ðu3ÞÞf1ðu1Þf2ðu2Þf3ðu3Þ:

ðI:4Þ

Joe (1997) proves that conditional distribution functions can be solved using

FðujvÞ ¼ @Cu;vjjv�j
F ujv�j;F vjjv�j

� �� �� �
@F vjjv�j

� � ; ðI:5Þ

where v�j is the vector v that excludes the component vj. The above example is
conditioned upon y1.

Appendix II. Marginals modelling

We apply an AR(2) model for the mean equation and capture asymmetric
volatility using the GARCH-GJR model (Glosten et al., 1993). The impact of
skewness and kurtosis within the residuals (error distribution) is modelled using
the skewed Student t (Skew-T) set-up of Hansen (1994) to incorporate the
effects of skewness and kurtosis. There will be a higher probability of a large
number of negative returns than positive returns during bear markets.
Therefore, these effects are captured by a negative k that indicates a left-
skewed density. Thus, our marginal model is given by:

yi;t ¼ ci þ
X2
j¼1

/i;j � yi;t�j þ
ffiffiffiffiffiffi
hi;t

p
� zi;t; for i ¼ 1; . . .;N; ðII:1Þ

hi;t ¼ xi þ aiy
2
i;t�1 þ bihi;t�1 þ ciy

2
i;t�1Ii;t�1; ðII:2Þ

zi;t � skewed Student tðmi; kiÞ; ðII:3Þ
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where Ii,t�1 = 0 if yi,t ≥ 0 and Ii,t�1 = 1 if yi,t < 0. The skewed Student t density
is given by

gðzjm; kÞ ¼
bc 1þ 1

m� 2

�
bzþ a

1� k

�2
 !�ðmþ1Þ=2

z\� a=b,

bc 1þ 1

m� 2

�
bzþ a

1þ k

�2
 !�ðmþ1Þ=2

z� � a=b

8>>>>><
>>>>>:

: ðII:4Þ

The constants a, b and c are defined as follows:

a ¼ 4kc
m� 2

m� 1

� �
; b2 ¼ 1þ 3k2 � a2; c ¼

C
mþ 1

2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðm� 2Þp

C
�
m
2

� : ðII:5Þ

Appendix III. Full-scale optimisation

Full-scale optimisation identifies the optimal portfolio given a set of return
distributions and a utility function outlining investor preferences. It implicitly
takes into account all of the features of the empirical sample including
skewness, kurtosis and any other peculiarities of the distribution and
calculates the portfolio weights that maximise a given utility function given
by (Equation III.1).

wFSO ¼ arg max
w

1

T

XT
t¼1

Uðw0RtÞ
 !

; ðIII:1Þ

subject to

w01N ¼ 1; ðIII:2Þ

�1�w� 1: ðIII:3Þ

The objective is to maximise the utility function U using the vector w that
contains the weights for a portfolio of N assets. R is a matrix of N 9 T, where
T is the set of sample (or expected) returns available for each asset.
Chronological order of these sample observations is ignored, and they are
treated as future scenarios with equal probability. 1N denotes a vector of ones.
Utility is evaluated for every combination of weights for all scenarios in the
returns sample R. The optimal portfolio weights wFSO are the weights w that
produce the highest average utility over the entire sample of R returns.
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Portfolio weights w can be subject to constraints as required by the user. In our
application, we apply a budget constraint such that the sum of all portfolio
weights must equal to unity and allow for short sales as shown in
Equations (III.2) and (III.3), respectively.
As the utility surface is often non-convex, analytical solutions are infeasible;

thus, grid searches might be used. However, grid searches are computationally
intensive. For example, we apply a precision of 0.01 percent for each asset
weight in a grid search for a portfolio of 17 assets, resulting in 4.85 9 1050

computations.16 A suitable alternative is to use heuristic or deterministic global
search algorithms.17 Heuristic search algorithms such as genetic (Holland,
1975), simulated annealing (Kirkpatrick et al., 1983), threshold accepting
(Dueck and Scheuer, 1990) and differential evolution (Storn and Price, 1997)
algorithms are popular as the inclusion of non-deterministic elements and
acceptance of occasional impairments in the optimisation process allow local
optima to be overcome easily at the cost of non-replicable results each time the
optimisation process is restarted. Alternatively, the results from deterministic
methods are replicable as they take steps from first-order conditions to find a
suitable trajectory through the search space that leads to the optimum.
Previous difficulties with deterministic search algorithms ending in the local
rather than global optimum have now been overcome with modern parallel
computing capacity.18 We use the MultiStart solver that is the most efficient
and robust global search algorithm in Matlab. We generate 50 random starting
vectors of size N in a gradient search to solve for the global optimal portfolio
weights across multiple processors in parallel. In our application of the
algorithm, at least 80 percent or more of these vectors must converge upon the
same global optimum to select the N optimal asset weights maximising the
investor’s utility function for the given returns sample R.

Appendix IV. Utility functions

The application of utility theory by Von Neumann et al. (1953) to portfolio
management can be found as early as Tobin (1958). However, Levy (1969) and
Samuelson (1970) discuss the relevance of higher moments for investment
decisions, recognising that during realistic portfolio management scenarios,
investors often express preferences that imply more complex utility functions

16 Hagstr€omer et al. (2008) report the number of possible solutions as given by
m ¼QN�1

N¼1
1=dþN

N where N is the number of assets and d is the precision of the asset
weights.

17 For more information on the application of heuristic algorithms and deterministic
search methods in finance, refer to Gilli et al. (2008) or Konno (2005), respectively.

18 The size of the portfolios, asset weight precisions and length of our multiperiod study
in our implementation of FSO are feasible due to the availability of the high-
performance distributed network computing system at our home institution.
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than power or quadratic utility (see Litterman (2003, Ch. 2) and Meucci (2005,
Ch.5)). Investor’s preferences for higher-order moments can be approximated
using a Taylor series expansion around themean, with investors showing positive
(negative) signs on the derivative with respect to the odd (even)moments (Arditti,
1967; Scott and Horvath, 1980; Harvey et al., 2010). Arditti (1971) shows
supportive empirical evidence by documenting that althoughmutual fundsmight
seem to exhibit poorer Sharpe ratios compared to the market index, they exhibit
greater positive skewness. Arditti and Levy (1975) detail a method for generating
a three-moment efficient frontier for multiperiod investments. They report that
for investors with short investment horizons, skewness of portfolios can be
ignored, but for longer horizons, the distributions’ skewness can be significant
and becomes an important variable in decision-making.
Bilinear and kinked power utility functions are investigated as both types are

able to capture one of the central tenets in modern portfolio management, that is
loss aversion. Both of these functional forms are characterised by a critical point
of investment return where returns are given disproportionately low utility. The
objective of limiting losses is motivated by monetary, regulatory requirements,
and riskmanagement. For example, an investormight require aminimum level of
wealth tomaintain a certain lifestyle that can changedramatically if this threshold
is broken. A decline in wealth below a certain level could breach a loan covenant
or even cause an investor to become insolvent.
Bilinear utility functions are formed by linear splines of different slopes on

each side of a critical threshold point. As they consist of straight lines, aside
from the kink at the critical point given by h, bilinear functions do not reflect
risk aversion in the same manner as power utility because the marginal utility
does not decrease as returns increase. Returns are penalised with low utility if
they are below the critical point h and the higher the value of P, the greater the
penalty applied. Risk-seeking behaviour is characterised as utility functions
that have greater upside relative to downside preferences. For bilinear utility
functions, investors with parameter P = 1 are more risk-seeking than P = 3,
followed lastly by P = 5.
Kinked power utility functions incorporate loss aversion with k that creates a

kink at critical point h as returns below it have a disproportionately lower
weight. The degree of the investor’s sensitivity to loss and relative risk aversion
(RRA) is proportional to the values of k and c, respectively. For kinked power
utility investors, those with parameters k = 3; c = 1 are more risk-seeking than
k = 1; c = 1, followed lastly by k = 3; c = 3.
S-curve utility functions are important as proponents of behavioural finance

have noted a number of contradictions to the neoclassical view of expected
utility maximisation. Kahneman and Tversky (1979) find that investors focus
on returns from an investment rather than wealth levels. In this regard, under
prospect theory, investors exhibit risk aversion in the domain of gains but are
risk-seeking in the domain of losses. Empirical studies find support for these
behavioural effects in ex ante decision problems (Thaler et al., 1997) and for
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dynamic portfolio revisions where investors tend to sell winners early and to
hold on to losers too long (Odean, 1998). This behaviour is best captured by an
S-curve utility function that features an inflection point given by h. The closer
(further) returns are to (from) the inflection point, the S-curve function implies
higher (lower) absolute values of marginal utility. The parameters s1 and A
respectively determine the shape and magnitude of the downside of the
function, whereas s2 and B determine the upside characteristics in the same
manner. Benartzi and Thaler (1995) report that the main determinant of
portfolio choice under S-curve preferences are the loss aversion parameters A
and B and the higher the ratio of B/A, the higher the risk chosen for the
portfolio. The curvatures given by s1 and s2 are of secondary importance and
have a minor influence on portfolio allocations. Intuitively, for the S-curve,
utility is concave when returns are positive, but for negative returns it becomes
convex, showing risk-seeking behaviour. Under such preferences, the investor
exhibits the willingness to take on more risk when losses are made. Therefore,
investors with S-curve utility functions are more risk-seeking than those with
kinked power or bilinear utility preferences due to the lower penalty of utility
for returns below the inflection/kink point. Investors where B/A = 3 are the
most risk-seeking, followed by B/A = 2 and lastly B/A = 1.

Appendix V. Portfolio performance with economic (risk-adjusted returns) and
consensus (indices of acceptability) measures

To evaluate the reduction in estimation error between using estimates of
expectedreturns incorporatingcorrelationasymmetriesagainsthistorical returns,
we report theperformanceof theportfolio strategies usinga rangeof risk-adjusted
metrics toprovideeconomic intuition,andthe indicesofacceptability (Chernyand
Madan, 2009) thatmeasure thedegree of consent for the strategy.Asourportfolio
strategies optimise the investor’s utility function directly, it is vital thatwe report a
range of metrics to broadly capture investor preferences.
Using a range of risk-adjusted returns metrics (e.g. Sharpe ratio, Sortino

ratio, Omega, Mean/CVaR) allows the measurement of the out-of-sample
performance of dynamically adjusted portfolios where variance, downside and
tail risk are captured. These metrics are commonly reported in the hedge fund
literature as hedge funds typically generate non-Gaussian outcomes (Adler and
Kritzman, 2007), require accurate identification of changes in exposure to risk
factors for accurate evaluation of performance and exhibit increased exposure
to downside risk (Pinnuck, 2004; Gerrans, 2006).
Indices of acceptability19 are designed to convey an understanding of the set

of personalised pricing kernels that view a trade with positive marginal value.
Intuitively, as portfolio managers act as agents on behalf of investors,

19 Details regarding the derivation of the indices of acceptability with concave distortion
functions are given in Appendix VI.
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personalised utility functions could be inappropriate. Therefore, a portfolio
evaluation measure that captures the preferences of a wide range of investors
and agents who constitute the market is desirable. As stated by Cherny and
Madan (2009, p. 2600), ‘the higher the level of acceptability, the greater is the
set of consenting measures and the more likely that it is viewed positively by
investors who are not at hand at the decision-making point’. Thus, the indices
of acceptability can be used to gauge the degree of positive consensus
surrounding the direction of the optimal trade. The higher the index value, the
more agreeable the investor is with the direction of the trade(s).
Reporting both economic and consensus measures allows for two key

insights: (i) an understanding of the utility functions, when optimised in a
portfolio management scenario with historical returns, that produce the highest
outcomes for the indices of acceptability (consensus measure) or risk-adjusted
metrics (economic measure); and (ii) the utility functions that exhibit the
greatest benefits from using asymmetric returns estimates.
As the indices of acceptability (Cherny and Madan, 2009) successfully

capture the preferences of a broad proportion of market participants, we can
observe each category of utility functions and their risk parameters to
understand the type of behaviour investors should ideally exhibit to maximise
the consensus regarding the direction of the trades. Cherny and Madan (2009)
state that the evaluation of trades consists of the direction and scale of the
trade. However, the scale of trade is affected by several issues that are
personalised (e.g. level of personal risk aversion, wealth and borrowing ability
of the individual trading) and market-based (e.g. depth of the market and the
resulting impact of the trade on the terms of the trade). Therefore the direction
of a trade is presumed to be a more objective consideration. Following this
argument, an acceptability index is an indicator of the size of support (degree of
consensus) provided to a marginal trade in the preferred direction.
This is important as it conceptualises the type of utility functions that

optimise trades in the direction that a large proportion of investors in the
market prefer. First, by analysing the results of utility function optimisations
that consistently produce high values of the indices of acceptability, this would
lead us to potentially conclude that most market participants would support
those particular utility functions. Second, we can understand if a difference
exists between the magnitude of the consensus (as defined the indices of
acceptability) and economic motivations (as defined by the risk-adjusted return
measures) for an investor.
For example, an unsophisticated fund manager trading on behalf of an

investor would use historical returns samples as an estimate of expected returns
and execute a series of trades in the preferred direction. If those trades result in
a high index of acceptability and high risk-adjusted return, we can conclude
that the fund manager’s behaviour is ideal as he is executing trades that would
receive a high level of support from the investors and he is economically
successful. However, other outcomes might result such that the fund manager
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may score a high index of acceptability and a low economic outcome or the
opposite.
Therefore, it is important to observe the economic results when historical

returns are applied, as obtaining unadjusted historical data is a relatively simple
process compared to producing asymmetric estimates where substantial
mathematical complexity and computational resources are required. Therefore,
we wish to observe the type of investors who exhibit the greatest benefits from
applying asymmetric estimates as it is possible that certain types of investors
(e.g. investors with a high degree of loss aversion) may not experience any
performance enhancements.

Appendix VI. Indices of acceptability and concave distortion functions

Indices of acceptability are designed to convey an understanding of the set of
personalised pricing kernels that view a trade with positive marginal value.
High levels of acceptability translate to a larger pool of pricing kernels
consenting to the trade. As provision of a specific utility function is not
required, this effectively depersonalises the portfolio selection process and is
therefore more closely related to the intuitions embedded in classical
economics. Therefore, the indices of acceptability are ideal as a set of portfolio
performance ranking measures.
The indices of acceptability are computed by inducing a hypothetical shock

to portfolio returns with a concave distortion function to generate a stressed
sample. The portfolio return X is modelled as a random cash flow with end of
period distribution function FX (X). The portfolio return is regarded as
acceptable at a given level d if the following condition as shown in
Equation (VI.1) is satisfied.

Eðd;XÞ� 0 where Eðd;XÞ ¼
Z 1

�1
xdðWdðFXðxÞÞÞ: ðVI:1Þ

Where Ψd (FX) is a distortion function that is parameterised by distortion
value d.20 In the special case that Ψd (FX) = FX (X), then E(d, X) in
Equation (VI.1) is the expected value of X. However, if the distortion function
Ψd (FX) is concave, losses are reweighted upwards when FX (X) is close to zero,
and gains are discounted when FX(X) is close to unity. Intuitively, this is
consistent with the behaviour of risk-averse agents. Cherny and Madan (2009)
consider four different concave distortion functions that result in the AIMIN,
AIMAX, AIMINMAX, and AIMAXMIN measures.

20 As performed by Cherny and Madan (2009), we use a distortion value of 2.
Intuitively, the distortion value can be understood as the amount of stress applied to
portfolio returns, therefore distorting the original returns distribution.
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The AIMIN measure generates a distorted sample on forming the expecta-
tion of the minimum of several draws from a returns series as shown in
Equation (VI.2).

WdðxÞ ¼ 1� ð1� xÞdþ1; d 2 Rþ; x 2 ½0; 1�: ðVI:2Þ

The condition E(d, X) ≥ 0 is equivalent to describing that the expectation
computed using the minimum of (d + 1) draws from the distribution of the
portfolio return X must be positive to be deemed an acceptable investment
return. Therefore, this measure demonstrates that using the worst case of a
distorted sample generated from the portfolio distribution still produces an
acceptable investment opportunity. Thus, the AIMIN measure amplifies large
losses by a distortion factor (d + 1) and discounts large gains to zero.21

Intuitively, as large positive returns are nullified and large losses are
exaggerated, the AIMIN measure is suitable for investors who are loss-averse.
For example, an investor with a bilinear utility function where P = 5 represents
an investor with a high degree of loss aversion; therefore, to gauge the
acceptability of a distribution of portfolio returns, the AIMIN measure is a
more suitable metric.
The AIMAX measure generates a distorted sample on forming the

expectation of the maximum of several draws from a returns series as given
in Equation (VI.3). Mathematically, the AIMAX measure discounts large
gains by a distortion factor and amplifies large losses to negative infinity.

WdðyÞ ¼ y
1

d2þ1; d2 2 Rþ; y 2 ½0; 1�: ðVI:3Þ

Intuitively, as unbounded large weights are applied upon large losses, and
large gains suffer a slight distortion of (d + 1), the level of positive gains have a
greater effect on the AIMAX metric and is therefore more suitable for investors
greater preferences for positive skewness. For example, for kinked power utility
investors where c = 3 and k = 1 and c = 3 and k = 3, the AIMAX and AIMIN
should be used as performance measures, respectively. This is because kinked
power investors characterised by c = 3, k = 1 have greater upside preferences
relative to downside preferences compared to power investors characterised by
c = 3, k = 3.
For a balanced perspective, a suitable metric would simultaneously discount

large gains to zero and amplify large losses to infinity. This is performed by the
AIMAXMIN and AIMINMAX metrics that are given by Equations (VI.4)
and (VI.5), respectively.

WdðyÞ ¼ ð1� ð1� ydþ1Þ 1
dþ1; d 2 Rþ; y 2 ½0; 1�: ðVI:4Þ

21 For further details, see Section 3.8 of Cherny and Madan (2009).
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WdðyÞ ¼ 1� ð1� y
1

dþ1Þdþ1; d 2 Rþ; y 2 ½0; 1�: ðVI:5Þ

The AIMAXMIN (AIMINMAX) constructs a stressed sample using an
AIMIN (AIMAX) perspective followed by an AIMAX (AIMIN) perspective.
Therefore, of the four indices of acceptability, the most generalised approach is
given by the AIMAXMIN and AIMINMAX metrics and is applicable to a
broad spectrum of market participants.

Appendix VII. International country data set

By performing portfolio optimisation upon several data sets with a broad
coverage of assets across the entire US market or among the largest developed
economies in the world, this improves the robustness of our investigation. Our
international country data set spans from January 1970 to July 2010 (20 years
of monthly data). It consists of market indices from the United States,
Canada, Japan, France, Italy, Germany, Switzerland, the UK and Australia
that is sourced from MSCI. Similar to our US data set, all indices in
international country data set fail the Jarque–Bera test of normality at the 1
percent level.

7.1. International country analysis: Risk-adjusted returns

Table A6 shows a range of risk-adjusted metrics for the portfolio of nine
international country indices. Generally, we find improvements for kinked
power utility functions, less for bilinear, and none for S-curve utility when
asymmetric returns estimates are applied.
In Panel A (kinked power utility), all cases show a greater Sharpe, Omega,

Sortino and Mean/CVaR ratios when asymmetric estimates are applied. The
largest improvements are demonstrated by K3,3, namely the most conservative
of all kinked power utility functions applied due to the higher degree of RRA
and loss aversion. In contrast, the case of K3,1, where investor’s preferences
exhibit lower degrees of loss aversion and higher RRA, produces the least
improvement but has the highest value of risk-adjusted returns whether
historical or asymmetric returns estimates are applied. When asymmetric
estimates are applied, risk-adjusted return metrics are improved such that
similar values are obtained across all kinked power utility functions.
In Panel B (bilinear utility functions), improvements across all risk-adjusted

metrics are observed when asymmetric estimates are used for the cases of B5

where h�2 percent and h�5 percent, and B3 where h�5 percent. Under these utility
function scenarios, the higher the degree of loss aversion, the greater the
improvement when asymmetric estimates are applied. Across all values of h, B1

experiences large adverse effects when asymmetric estimates are applied as
negative mean returns are produced. We find that the location of the kink has a
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Table A6

Risk-adjusted return metrics for FSO utility functions - international country indices

Utility

parameters Sharpe ratio Omega ratio Sortino ratio Mean
CVaR

h
(%)

Risk

parameters

Hist.

sample

Asymm.

est.

Hist.

sample

Asymm.

est.

Hist.

sample

Asymm.

est.

Hist.

sample

Asymm.

est.

Panel A: Kinked power utility

0 K1,3 9.34 9.72 1.28 1.29 13.19 14.21 2.83 3.04

K3,3 7.18 10.34 1.21 1.32 9.88 15.34 2.22 3.26

K3,1 9.90 11.68 1.29 1.35 14.74 17.23 3.51 3.72

�2 K1,3 8.33 10.36 1.25 1.31 11.78 15.37 2.61 3.34

K3,3 5.84 12.34 1.17 1.37 7.98 18.57 1.77 4.19

K3,1 9.90 11.68 1.29 1.35 14.74 17.23 3.51 3.72

�5 K1,3 5.54 11.60 1.15 1.34 7.77 17.36 1.92 3.66

K3,3 2.01 12.63 1.05 1.39 2.74 19.38 0.66 4.10

K3,1 9.90 11.68 1.29 1.35 14.74 17.23 3.51 3.72

Panel B: Bilinear utility

0 B1 4.03 3.11 1.11 0.92 5.74 4.14 1.27 0.97

B3 11.05 9.04 1.35 1.26 16.66 13.07 3.49 2.78

B5 11.16 9.53 1.35 1.28 15.84 13.84 3.28 2.97

�2 B1 4.02 3.13 1.11 0.92 5.71 4.16 1.27 0.97

B3 10.53 10.26 1.33 1.30 15.62 15.14 3.40 3.28

B5 8.71 10.59 1.26 1.32 12.10 15.74 2.62 3.46

�5 B1 4.17 3.01 1.12 0.92 5.94 4.00 1.32 0.93

B3 6.65 10.42 1.19 1.30 9.51 15.30 2.32 3.21

B5 3.70 10.93 1.10 1.32 5.14 16.37 1.23 3.54

Panel C: S-curve utility

0 S3 3.82 5.05 1.10 1.14 5.49 7.23 1.33 1.83

S2 5.43 0.91 1.15 1.02 8.04 1.27 2.21 0.31

S1 9.05 3.56 1.26 1.10 13.39 4.83 3.17 1.03

�2 S3 6.39 0.43 1.18 1.01 9.51 0.60 2.58 0.14

S2 7.44 1.30 1.21 1.04 10.93 1.75 2.82 0.35

S1 13.76 7.63 1.45 1.22 21.76 11.12 4.74 2.56

�5 S3 9.90 5.74 1.30 1.17 14.65 7.98 3.10 1.48

S2 12.27 10.38 1.39 1.30 19.04 15.56 4.02 3.50

S1 11.14 12.82 1.36 1.39 16.91 19.84 3.31 4.37

This table shows the Sharpe, Omega, Sortino, andMean/CVaR ratios for investors with kinked

power (Panel A), bilinear (Panel B) and S-curve (Panel C) utility functions for a portfolio of 9

international country indices when historical samples or asymmetric estimates of expected

returns are applied. The kink/inflection point of the utility function is denoted by h.
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greater impact on the risk-adjusted returns for bilinear utility compared to
kinked power utility.
In Panel C (S-curve utility functions), the use of asymmetric estimates causes

a deterioration in performance for most of the cases explored. Only small
improvements are generated when h0 percent and S3, and h�5 percent and S1. We
find that S1 (S3) where investors exhibit lower (high) levels of upside relative to
downside preferences produces the highest (lowest) risk-adjusted returns across
the different values of h.

7.2. International country analysis: Indices of acceptability

Table A7 reports the indices of acceptability calculated upon the portfolio of
nine international country indices. Although each utility function has different
risk parameters, they all exhibit kink/inflection points, h. A lower value of h
indicates lower risk aversion as this means that the kink/inflection point (where
drops in utility occur) comes into effect in the negative returns region.
Generally, we find that utility functions that exhibit low levels of loss aversion
(e.g. B1, K3,1) and higher preferences for gains relative to losses (e.g. S3) tend to
have larger indices of acceptability.
Panel A reports results for the kinked power utility functions, where large

values of c and k are indicative of an investor with higher RRA and loss aversion,
respectively. We find that changes in risk parameters c and k have greater effects
on the portfolios than do changes in h.When investors have higher levels of RRA
and lower levels of loss aversion (i.e. K3,1), larger indices of acceptability are
produced. A combination of h0 percent andK1,3 indicates an investor whose utility
only increases moderately to changes in upside gain and is highly averse to losses.
In this case, we find that asymmetric estimates produce better outcomes reflected
by the larger values for AIMIN and AIMAXMIN compared to historical data.
The AIMIN is a more suitable metric than the AIMAX for investors who are
more loss-averse. Notably, evenwhen theAIMAXMIN is applied, amore robust
metric that also penalises large positive returns, the superior performance of using
asymmetric estimates continues to persist.
In Panel B, where investors are assumed to exhibit bilinear utility, higher

values of P indicate larger levels of loss aversion. The change in utility on the
right side of the kink points remains fixed for B1, B3 and B5. We find that the
indices of acceptability are affected more by the changes in risk parameters
rather than the location of the kink. When h0 percent and B5, this is the most loss-
averse model in the bilinear utility function category. Asymmetric estimates
produce higher AIMIN and AIMINMAX values compared to historical data.
As the AIMIN metric is most suitable for loss-averse investors compared to
AIMAX, this shows that asymmetric estimates enhance the performance. This
result persists for the AIMINMAXmetric that combines the desirable attributes
of the AIMAX metric with the AIMIN metric. For h�2 percent and h�5 percent,
both B3 and B5 have similar values of indices of acceptability and all the indices
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Table A7

Indices of acceptability results for FSO utility functions -international country indices

Utility

parameters AIMIN AIMAX AIMINMAX AIMAXMIN

h
(%)

Risk

parameters

Hist.

sample

Asymm.

est.

Hist.

sample

Asymm.

est.

Hist.

sample

Asymm.

est.

Hist.

sample

Asymm.

est.

Panel A: Kinked power utility

0 K1,3 5.95 6.54 17.88 17.76 25.41 25.17 2.11 2.33

K3,3 5.44 6.97 17.08 18.11 24.30 25.63 1.91 2.50

K3,1 9.30 8.79 20.50 20.75 28.83 29.27 3.43 3.20

�2 K1,3 6.10 6.75 17.66 18.00 25.07 25.50 2.17 2.41

K3,3 5.48 7.30 16.84 18.75 23.95 26.54 1.93 2.62

K3,1 9.30 8.79 20.50 20.75 28.83 29.27 3.43 3.20

�5 K1,3 6.93 7.56 18.20 18.93 25.78 26.77 2.48 2.71

K3,3 5.83 7.47 16.89 18.49 23.98 26.13 2.06 2.69

K3,1 9.30 8.79 20.50 20.75 28.83 29.27 3.43 3.20

Panel B: Bilinear utility

0 B1 11.79 9.68 21.59 19.28 30.04 26.98 4.55 3.64

B3 6.51 6.49 18.15 17.95 25.74 25.46 2.34 2.31

B5 5.86 6.41 18.14 17.82 25.80 25.28 2.07 2.28

�2 B1 11.78 9.68 21.63 19.28 30.10 26.99 4.54 3.64

B3 6.69 6.85 18.08 18.27 25.62 25.89 2.40 2.45

B5 5.79 6.66 17.31 17.93 24.60 25.40 2.04 2.38

�5 B1 11.78 9.66 21.65 19.26 30.14 26.96 4.54 3.63

B3 7.48 7.59 18.64 19.20 26.34 27.16 2.70 2.73

B5 6.22 7.21 17.44 18.31 24.74 25.90 2.21 2.58

Panel C: S-curve utility

0 S3 13.74 12.10 23.10 21.45 31.94 29.81 5.43 4.64

S2 13.21 11.13 22.81 20.06 31.61 27.90 5.19 4.27

S1 11.02 8.88 21.70 19.87 30.37 27.97 4.13 3.26

�2 S3 12.41 10.82 22.30 19.73 31.00 27.45 4.80 4.16

S2 11.71 9.86 22.41 20.29 31.29 28.44 4.46 3.69

S1 8.30 7.01 19.80 18.46 27.93 26.14 3.04 2.52

�5 S3 9.21 8.98 20.19 19.65 28.39 27.63 3.40 3.31

S2 8.50 7.97 19.69 19.27 27.74 27.21 3.13 2.88

S1 7.38 7.35 19.08 18.79 26.98 26.58 2.68 2.65

This table shows the indices of acceptability metrics of AIMIN, AIMAX, AIMINMAX, and

AIMAXMIN for investors with kinked power (Panel A), bilinear (Panel B) and S-curve

(Panel C) utility functions a portfolio of 9 international country indices when historical

samples or asymmetric estimates of expected returns are applied. The kink/inflection point of

the utility function is denoted by h.
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are larger when asymmetric estimates are used rather than historical. Thus, we
find that investors who exhibit larger degrees of loss-averseness exhibit greater
benefits when asymmetric estimates are used.
In Panel C, S-curve utility functions tend to exhibit larger values for the indices of

acceptability compared to kinked power and bilinear utility functions. However,
there are no gains to be found when asymmetric estimates are used instead of
historical data. This might be due to the characteristics of the international country
portfolio and the size of the data set being too small for the CVCmodel to produce
any potential enhancements. In addition, agents exhibiting S-curve preferences
generally do not exhibit large degrees of loss aversion compared to bilinear and
kinkedpowerutility.Wefind thatS-curve functionswithS3 exhibit thehighest levels
of the indices of acceptability. This outcome is similar to kinked power utility
functions whereK3,1 as investors in these cases have a greater preference for upside
gains and lower levels of loss aversion.
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