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In the context of managing downside correlations, we examine the use of multi-dimensional elliptical
and asymmetric copula models to forecast returns for portfolios with 3–12 constituents. Our analysis
assumes that investors have no short-sales constraints and a utility function characterized by the
minimization of Conditional Value-at-Risk (CVaR). We examine the efficient frontiers produced by each
model and focus on comparing two methods for incorporating scalable asymmetric dependence
structures across asset returns using the Archimedean Clayton copula in an out-of-sample, long-run
multi-period setting. For portfolios of higher dimensions, we find that modeling asymmetries within
the marginals and the dependence structure with the Clayton canonical vine copula (CVC) consistently
produces the highest-ranked outcomes across a range of statistical and economic metrics when com-
pared to other models incorporating elliptical or symmetric dependence structures. Accordingly, we con-
clude that CVC copulas are ‘worth it’ when managing larger portfolios.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Equity returns suffer from increased correlations during bear
markets (Longin and Solnik, 1995; Longin and Solnik, 2001;
Ang and Chen, 2002). This characteristic, known as asymmetric
or lower tail dependence, violates the assumption of elliptical
dependence that is the basis of modern portfolio theory and
mean–variance analysis (Ingersoll, 1987; Markowitz, 1952). While
forecasting models incorporating asymmetric dependence produce
significant gains for the investor with no short-sales constraints,
they have been limited to bivariate or trivariate settings using
standard Archimedean copulas (Patton, 2004; Garcia and Tsafack,
2011; Ba, 2011). More advanced flexible multivariate copulas
(‘‘vine copulas’’) introduced by Aas et al. (2009) presents an impor-
tant opportunity for extending this literature further. Specifically,
there are several interesting questions in the context of modern
portfolio management. Does the more advanced Clayton canonical
vine copula (CVC) produce economic and statistical outcomes
superior to that of the Clayton standard copula (SC) in out-of-
sample tests? Does the Clayton CVC exhibit superiority above some
threshold size of portfolio? Does a more advanced model of the
dependence structure produce outcomes superior to that of multi-
variate normality?

We answer these questions using an out-of-sample, long-run,
multi-period investor horizon setting with portfolios comprising
up to 12 US industry indices in a tactical asset allocation exercise.
It is worth noting that our chosen focus on indices as ‘‘assets’’ deliv-
ers an important experimental advantage: collectively the full set of
12 indices constitutes the entire US market index. Thus, due to a
binding dimensionality constraint, by employing indices as the
basic constituents of the portfolios, our analysis is far more compre-
hensive than the alternative approach of using individual stocks.
Moreover, as each index consists of hundreds of stocks, our investi-
gation effectively involves highly diversified portfolios that exhibit
low levels of idiosyncratic risk compared to other applications that
form portfolios of individual stocks. Asymmetric dependence is evi-
dent regardless of whether an investor has a large number of US
stocks within an equity investment portfolio (Ang and Chen,
2002) or is internationally diversified (Longin and Solnik, 2001;
Longin and Solnik, 1995). Furthermore, Aggarwal and Aggarwal
(1993) show that with 25 securities in a naive portfolio, the degree
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of negative skewness within the portfolio increases significantly
and similar evidence is shown by Simkowitz and Beedles (1978)
and Cromwell et al. (2000). Therefore, although diversification is
prudent financial investment advice for ‘normal’ times, it becomes
questionable when all stocks in the portfolio fall in times of market
stress. Moreover, due to asymmetric dependence and negative
skewness, the positive effects of diversification are greatly dimin-
ished when they are needed most (Chua et al., 2009). Thus, explic-
itly managing asymmetric dependence could be very worthwhile as
investors might require additional compensation for undertaking
downside risk (Ang et al., 2006), negative skewness (Simkowitz
and Beedles, 1978; Cromwell et al., 2000) and have a preference
for positively skewed portfolios (Arditti, 1967).

Our work is most relevant to Patton (2004) and Hatherley and
Alcock (2007) who conduct studies upon portfolios of two and three
assets respectively over investment horizons of less than a decade.
Patton (2004) investigates whether asymmetries are predictable
out-of-sample and portfolio decisions are improved by forecasting
these asymmetries, as opposed to ignoring them over a single period
investment horizon. He shows that investors with no short-sales
constraints (i.e., portfolio weights are allowed to be negative) expe-
rience economic gains. Hatherley and Alcock (2007) report that
managing asymmetric dependence, using a Clayton standard copula
(SC) against the benchmark multivariate normal probability model,
results in reduced downside exposure. Patton (2009) states that the
obvious and perhaps most difficult avenue for future research is the
extension of copula-based multivariate time series models to high
dimensions. Such a breakthrough came with the CVC technology
developed by Aas et al. (2009). The CVC consists of building blocks
of pair copula and with a multitude of bivariate copulas from which
to choose from, it is now possible to flexibly model the dependence
structure for a multivariate joint distribution.

The novelty of our contribution lies in the non-trivial extension
of this literature by incorporating methods that allow for higher
scalability for capturing asymmetric dependence, with larger data
sets over a multi-period investment horizon spanning several dec-
ades. Moreover, we apply a broad range of metrics to further inves-
tigate economic and statistical performance. We demonstrate how
to meaningfully capture asymmetric dependence for higher portfo-
lio dimensions by using the CVC model and mathematically
expanding the SC.1 A multi-period long-term investment horizon
study is necessary as Barberis (2000) finds that multi-period deci-
sions are substantially different from single-period decisions due
to hedging demands if investment opportunities are time-varying
(Merton, 1971). As investors might have different risk preferences,
testing portfolio management strategies should include the applica-
tion of a variety of risk-adjusted measures that incorporate down-
side risk and robustness against non-linear payoffs. Using an array
of metrics to gauge portfolio performance is important as the pres-
ence of distributional asymmetries within asset returns can impact
investors’ portfolio choices (Harvey and Siddique, 2000; Longin
and Solnik, 2001; Harvey et al., 2010). More specifically, our work
manages asymmetric dependence by using the Clayton CVC that
models asymmetric dependence of a portfolio of N assets with
N(N � 1)/2 parameters compared to the Clayton SC that employs just
one parameter. Thus, the Clayton CVC, with its higher degree of
parameterization, is capable of leading to superior forecasts of equity
returns and improved portfolio management decisions. However,
much of the forecasting literature indicates that more complicated
models often provide poorer forecasts than simple and misspecified
models (Swanson and White, 1997; Stock and Watson, 1999). Kritz-
man et al. (2010) state that practitioners often use simpler models to
1 A detailed introduction to copula theory can be found in Joe (1997) and Nelsen
(2006). Other resources for vine copula theory can be found in Aas et al. (2009) and
Kurowicka and Joe (2011).
discriminate amongst investment opportunities, as complex econo-
metric models can suffer from issues such as data mining, poor per-
formance out-of-sample, and failure to produce meaningful
profitability in a portfolio management context.

Given this background, our work leads to a deeper understand-
ing of whether the increase in parameterization of an asset portfo-
lio leads to both statistical and economically significant benefits.
From a modeling viewpoint, the lower the dimensionality of a
model, the higher the reliability of the parameters (Ané and
Kharoubi, 2003). Furthermore, the main feature of the CVC com-
pared to the SC is its mathematical scalability for portfolios of high
dimensions. Thus, we seek insights into the portfolio size over
which the model exhibits superiority. Furthermore, we assess
whether the modeling of the dependence structure or the model-
ing of the marginals has the greater impact on a portfolio. This al-
lows practitioners to understand the areas of a probability model
that need to be analyzed further. We also demonstrate a method
for building the CVC based on the sums of correlations of assets
within the portfolio.

Our results show that for portfolios of 10 constituents and
above, our most advanced model that captures asymmetries with-
in the marginals and the dependence structure using the Clayton
CVC consistently produces highly ranked outcomes across a range
of statistical and economic performance metrics. Economic gains
only exist for non-short sales constrained portfolios such as those
used by hedge funds. In addition, it produces a returns distribution
that exhibits significant positive skewness from a portfolio com-
prising industry indices that together represent the US market in-
dex. This is notable as US industry indices exhibit high levels of
negative skewness. Our findings indicate that asymmetries should
be incorporated in the modeling of both the marginals and the
dependence structure and we find that modeling of asymmetries
within the dependence structure has a greater impact than model-
ing of the marginals for portfolios of higher dimensions.

The paper is organized as follows. Section 2 describes the data-
set. Section 3 details the methods used in modeling of the
dependence structure and marginals, and the selection of the
investor’s utility function for portfolio optimization. Section 4 pre-
sents and discusses the empirical results of our study and we con-
clude in Section 5.

2. Data

Our data set consists of US monthly returns on 12 indices,
constituting the full US market (data sourced from Ken French’s
website).2 The indices are manufacturing (Manuf), other, money,
chemicals (Chems), consumer non-durables (NoDur), retail (Shops),
consumer durables (Durbl), business equipment, (BusEq), healthcare
(Hlth), telecommunications (Telcm), utilities (Util), and energy
(Enrgy). Similar to DeMiguel et al. (2009), we calculate arithmetic re-
turns in excess of the US 1-month T-bill. The sample period extends
from July 1963 to December 2010, yielding 570 observations in total.
The first 120 observations are reserved for the parameterization pro-
cess for our portfolio management strategy, while the out-of-sample
period consists of 450 months from July 1973 to December 2010.

We implement our strategies in portfolios of three, six, nine,
ten, eleven, and twelve constituents as shown in Table 1. All indi-
ces exhibit excess kurtosis and reject the null hypotheses for the
Jarque–Bera test of normality at the 1% level. All indices exhibit
negative skewness except for Durbl and Hlth. Durbl exhibits the
minimum (�32.97%) and maximum (42.91%) return for our
2 The US market index is the value-weighted return on all NYSE, AMEX and
NASDAQ stocks from CRSP. Industry indices are value-weighted returns formed by
assigning each NYSE, AMEX, and NASDAQ stock from CRSP to an industry portfolio
according to its 4-digit SIC code.



Table 1
Input data descriptive statistics.

Industry index Mean Std. deviation Skewness Kurtosis Min Max Jarque–Bera

Manuf 0.55 0.054 �0.525 5.73 �29.15 21.55 203.12⁄

Other 0.39 0.056 �0.507 5.02 �29.92 18.80 121.71⁄

Money 0.51 0.055 �0.376 4.75 �22.40 20.51 87.43⁄

Chems 0.48 0.047 �0.240 5.16 �25.18 19.68 115.97⁄

NoDur 0.63 0.044 �0.296 5.08 �21.63 18.15 110.61⁄

Shops 0.57 0.053 �0.269 5.31 �28.91 25.22 133.19⁄

Durbl 0.42 0.063 0.146 8.31 �32.97 42.91 672.91⁄

BusEq 0.53 0.067 �0.213 4.14 �26.59 20.02 35.28⁄

Hlth 0.59 0.050 0.057 5.44 �21.07 29.07 142.20⁄

Telcm 0.39 0.047 �0.122 4.31 �15.97 21.98 42.10⁄

Utils 0.37 0.041 �0.077 4.04 �12.94 18.22 26.00⁄

Enrgy 0.66 0.054 �0.001 4.47 �19.10 23.33 50.88⁄

This table presents the descriptive statistics for excess monthly returns (relative to the 1-month T-bill) of 12 US industry indices (sourced from Ken French’s website). The full
sample runs from July 1963 to December 2010, yielding 570 observations. The indices are manufacturing (Manuf), other, money, chemicals (Chems), consumer non-durables
(NoDur), retail (Shops), consumer durables (Durbl), business equipment, (BusEq), healthcare (Hlth), telecommunications (Telcm), utilities (Util), and energy (Enrgy).The
mean, minimum and maximum are presented as percentages. Jarque–Bera tests the normality of the unconditional distribution of returns.
⁄ Statistical significance at the 1% level.

Table 2
Unconditional sample correlations.

Manuf Other Money Chems NoDur Shops Durbl BusEq Hlth Telcm Utils Enrgy

Manuf 1.00
Other 0.92 1.00
Money 0.81 0.83 1.00
Chems 0.87 0.82 0.77 1.00
NoDur 0.79 0.79 0.81 0.82 1.00
Shops 0.82 0.83 0.79 0.77 0.83 1.00
Durbl 0.85 0.79 0.74 0.74 0.68 0.76 1.00
BusEq 0.79 0.78 0.63 0.64 0.59 0.71 0.68 1.00
Hlth 0.67 0.69 0.68 0.72 0.77 0.67 0.52 0.61 1.00
Telcm 0.63 0.63 0.64 0.55 0.60 0.62 0.59 0.61 0.52 1.00
Utils 0.53 0.53 0.60 0.53 0.61 0.46 0.45 0.31 0.47 0.50 1.00
Enrgy 0.61 0.58 0.53 0.58 0.49 0.43 0.46 0.44 0.43 0.40 0.58 1.00

This table presents sample unconditional Pearson’s correlations between monthly index returns for 12 US industries over the full sample period, July 1963 to December 2010.
The indices are manufacturing (Manuf), other, money, chemicals (Chems), consumer non-durables (NoDur), retail (Shops), consumer durables (Durbl), business equipment,
(BusEq), healthcare (Hlth), telecommunications (Telcm), utilities (Util), and energy (Enrgy).
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sample. We report sample correlations in Table 2. The highest cor-
relation occurs between Manuf and Other (0.92) while the lowest
correlation occurs between Utils and BusEq (0.31).

The vine copula model by Aas et al. (2009) is a scalable method-
ology that can allow for large portfolios of assets but the user is
constrained by the computational resources available. Our work
involves the construction of investment portfolios consisting of
indices as opposed to individual stocks. Modern portfolio theory
suggests that such portfolios are more likely to exhibit elliptical
dependence than are individual stocks. Thus, our analysis is biased
against our empirical tests of portfolio optimization based on re-
turns forecasts incorporating asymmetric dependence. Further-
more, by using indices we minimize other drawbacks that would
occur with individual stocks- issues of size bias, selection bias,
short-sales restrictions, idiosyncratic risk, higher transaction costs
and illiquidity.
3 We use the conditional sampling method for the SC as detailed in Cherubini et al.
(2004, p.183). For the CVC, we use the Monte-Carlo simulation algorithm detailed by
Aas et al. (2009).
3. Research method

Portfolio management is a 2-stage process of (1) forecasting as-
set returns and (2) allocating weights to each asset within the port-
folio (Markowitz, 1952). The portfolio weights are calculated based
upon optimizing an investor’s utility function for the portfolio as-
set returns forecasts. Intuitively, our research method follows the
typical scenario faced by a portfolio manager in an investment
fund. As new information arrives for each asset at month t, the
portfolio manager has to make a forecast of asset returns for
the next month t + 1. Based upon the forecast of asset returns,
the manager rebalances the weights to construct a portfolio that
achieves the desired investment objective. The objective might
be to achieve maximum utility based upon the investor’s utility
function or for the portfolio to maintain a fixed level of risk.

In the first stage of forecasting returns, similar to DeMiguel
et al. (2009) we use a ‘‘rolling-window’’ approach. Each month t,
starting from t = W + 1 uses the data within the previous W months
(sample window = 120 months) to parameterize the multivariate
probability distribution (detailed in subsection 3.1) and using
Monte Carlo simulation3 methods, 10,000 returns are produced
using the Clayton Archimedean copula for each asset. These simu-
lated data are used as a returns forecast. In the second stage, using
these simulated data, we optimize a utility function defined by the
minimization of Conditional Value-at-Risk (CVaR) (detailed in sub-
section 3.2) to calculate the ‘‘ideal’’ weights for the portfolio man-
agement strategy and apply it to each out-of-sample window
month, t + 1. Therefore, the calculated target weights are continually
updated in each time period as they are dependent upon maximizing
the investor’s utility function based on the asset returns forecast.

3.1. Multivariate probability modeling

The cumulative distribution function (cdf) of a random vector
can be expressed in terms of its component marginal distribution
functions and a copula that describes the dependence structure



Fig. 1. Empirical relation between the US market and industry indices This figure
plots monthly excess returns for the US market vs. 12 constituent industry indices
from July 1963 to December 2010 (in excess of the US 1-month T-bill). The boxed
regions highlight threshold return values above +20% and below �20% for the
industry indices and the US market.

4 Tail dependence for a multivariate Student t copula is a function of the correlation
and degrees of freedom.
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between these components (Sklar, 1973). The copula approach is
designed to use subjective judgement about marginal distribu-
tions, leaving all information relating to the dependence structure
(as represented by the copula function) to be estimated separately.
Thus, copulas allow the creation of multivariate distributions that
have the flexibility required of risk management models and over-
comes the limitations of the traditional multivariate models.

A copula function C(u1, u2, . . ., un) is defined as a cdf for a mul-
tivariate vector with support in [0,1]n and uniform marginals. The
copula function is defined as:

Cðu1;u2; . . . ;unÞ ¼ PðU1 6 u1; . . . ;Un 6 unÞ ð1Þ

where (U1, U2, . . ., Un) is the corresponding multivariate vector.
Arbitrary marginal distribution functions may be selected such that
by using the transformations Ui = Fi(Xi), Eq. (2) defines a new multi-
variate distribution evaluated by x1, x2, . . ., xn with marginals Fi,
where i = 1, 2, . . ., n. The copula function is defined in terms of
cumulative distributive functions as shown:

Fðx1; x2; . . . ; xnÞ ¼ C½F1ðx1Þ; F2ðx2Þ; . . . ; FnðxnÞ� ð2Þ

Sklar (1973) shows the converse of (2) where any multivariate
distribution F can be written in terms of its marginals using a cop-
ula representation. It is possible to represent the density of the
copula if we assume Fi and C to be differentiable. The joint density
function f(x1, x2, . . ., xn) is defined as:

f ðx1; x2; . . . ; xnÞ ¼ f1ðx1Þ � f2ðx2Þ � � � � � fnðxnÞ
� c½F1ðx1Þ; F2ðx2Þ; . . . ; FnðxnÞ�; ð3Þ

where the density of Fi is given by fi(xi) and the density of the copula
is given by:

cðu1;u2; . . . ;unÞ ¼
@nCðu1;u2; . . . ; unÞ
@u1@u2 . . . @un

ð4Þ

As can be seen from Eq. (3), under appropriate conditions, the
joint density can be written as a product of the marginal densities
and the copula density, as opposed to the traditional modeling ap-
proaches where the joint density is decomposed into a product of
marginal and conditional densities. The dependence structure
among the Xi’s is captured by the density C(u1, u2, . . ., un) while
the fi’s capture the behavior of the marginals. The copula is chosen
to select the dependence between asset returns and is able to ac-
count for asymmetric and symmetric correlation structures
depending upon the copula chosen.

3.1.1. Clayton Archimedean copula
Archimedean copulas are commonly used due to their flexibility

and usefulness in modeling complex dependence structures from a
generator function as shown in Eq. (5):

Cðu1;u2; . . . ;unÞ ¼ G�1½Gðu1Þ þ Gðu2Þ þ � � � þ GðunÞ� ð5Þ

We use the Clayton copula due to its ability to parameterize
lower tail dependence across asset returns. Fig. 1 is a plot of US
monthly market returns against 12 counterpart US industry index
returns from July 1963 to December 2010 (in excess of the 1-
month T-bill rate). The ‘fan-shape’ behavior exhibited by the index
and market returns is indicative of an asymmetric (lower tail)
dependence structure. The boxed regions in Fig. 1 show that the
correlations between the aggregate US market and its constituent
indices are higher (lower) when returns are below (above) the
market monthly threshold return of �20% (+20%), as the density
of points on the downside is greater than that on the upside (in-
deed the upside box is totally vacant). This pattern corroborates
other studies (e.g., Longin and Solnik, 1995; Ang and Chen, 2002;
Patton, 2004) that describe these conditional correlations as
‘‘exceedance correlations’’. Our application of the Clayton copula
is such that lower tail dependence across equity returns is accom-
modated but not imposed. By focusing on managing the scenario of
lower tail dependence, we seek to design a portfolio management
strategy capable of providing reliably good performance during
times of market stress (Chua et al., 2009).

Fig. 2 shows a variety of dependence structures for the bivariate
case. If the Clayton Copula or the Pearson’s correlation parameters
are close to zero, the dependence structure is circular as shown in
Fig. 2a. Elliptical (Fig. 2b) and asymmetric (Fig. 2c) dependence
structures are accommodated but not imposed by the covariance
matrix and Clayton copula, respectively. It can be seen that the
Clayton copula, with its ability to parameterize lower tail depen-
dence is a more appealing model of actual returns in the long
run when compared to the assumptions of Mean–Variance Portfo-
lio Theory (MVPT) where asset returns are assumed to have ellip-
tical dependence as shown by Fig. 2b.

Substituting the Clayton copula generator function into Eq. (5)
and using Eq. (4), for illustrative purposes, we can generate a Clayton
SC probability distribution function (pdf) for six assets as shown:

c123456 ¼ Caðu1;u2; . . . ;u6Þ

¼ u�a
1 þ u�a

2 þ u�a
3 þ u�a

4 þ u�a
5 þ u�a

6 � 5
� �1

aþ6 ð6Þ

Thus, lower tail dependence across six assets is characterized by
a single parameter a. This results in a multivariate probability dis-
tribution of the form given by Eq. (7) where fn denotes the marginal
pdf and cn is the copula pdf:

f12345 ¼ f1 � f2 � f3 � f4 � f5 � f6 � c123456 ð7Þ
3.1.2. Canonical vine copula
Conventionally, a copula model is limited to a 1-parameter or

2-parameter specification of the dependence structure, which rep-
resents a potentially severe empirical constraint. Clearly, when
modeling the joint distribution of multiple assets, such limited
parameter models are unlikely to adequately capture the depen-
dence structure. Moreover, the Gaussian copula lacks tail depen-
dence and even though the multivariate Student t copula is able
to generate different tail dependence4 for each pair of variables, it
imposes the same upper and lower tail dependence across all pairs.
These limitations are overcome by the canonical vine model by
building bivariate copulas of conditional distributions.

Canonical vine copulas are flexible multivariate copulas that are
generated via hierarchical construction and can be decomposed



Fig. 2. Plots illustrating alternative dependence structures This figure shows a variety of dependence structures for the bivariate case of x1 and x2 asset returns. Fig. 2a shows
the circular dependence structure when the Pearson’s correlation and Clayton copula parameters are close to zero. Fig. 2b shows the elliptical dependence structure produced
for a correlation parameter of 0.5. Fig. 2c shows the asymmetric (lower tail) dependence structure produced for an Clayton copula parameter of 0.9.

6 Although return variance is known to be heteroscedastic, our study makes the
simplifying assumption of homoscedasticity. This allows us to focus upon perfor-
mance improvements by incorporating asymmetries into the dependence structure
and marginal distribution, as these are identified to have a greater impact on the
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into a cascade of bivariate copulas. The principle is to model
dependence using simple local building blocks (pair-copulas)
based on conditional independence. A joint probability density
function of n variables u1, u2, . . ., un can be decomposed without
loss of generality by iteratively conditioning as shown in Eq. (8):

f ðu1;u2; . . . ;unÞ ¼ f ðu1Þ � f ðu2ju1Þ � f ðu3ju1; u2Þ � � � f ðunju1; . . . ;un�1Þ
ð8Þ

Each of the terms in this product can be decomposed further
using conditional copulas. For example, the first conditional den-
sity can be decomposed into the copula function c12 (the copula
linking u1 and u2) multiplied by the density of u2 as shown in (9)
where Fi(.) is the cdf of ui:

f ðu2ju1Þ ¼ c12½F1ðu1Þ; F2ðu2Þ�f2ðu2Þ ð9Þ

Thus, the joint density of the three-dimensional case can be rep-
resented by a function of the bivariate conditional copulas and the
marginal densities:

f ðu1;u2;u3Þ ¼ c23j1ðF2j1ðu2ju1Þ; F3j1ðu3ju1ÞÞc12ðF1ðu1Þ; F2ðu2ÞÞ
c13ðF1ðu1Þ; F3ðu3ÞÞf1ðu1Þf2ðu2Þf3ðu3Þ

ð10Þ

Joe (1997) proves that conditional distribution functions may
be solved using (11):

FðujvÞ ¼
@Cu;v j jv�j

ðFðujv�j; Fðv jjv�jÞÞÞ
@Fðv jjv�jÞ

ð11Þ

where v�j is the vector v that excludes the component vj.
While other vine specifications exist, such as the D-vine case

(Aas et al., 2009), we select the canonical vine alternative due to
the efficiency of its hierarchical structure. If key variables that gov-
ern the interactions in the data set can be identified during the
modeling process, it is possible to locate these variables towards
the root of the canonical vine. Thus, we are able to build the canon-
ical vine by ordering assets closer to the root of the structure by
their degree of correlation with other assets within the portfolio.

If the Clayton CVC is implemented, the dependence structure of
a portfolio of six assets would be parameterized with 15 pairwise
copula parameters.5 As a result, the multivariate probability distri-
5 The number of parameters required to parameterize a dependence structure
using a canonical vine model given a k-parameter copula is given by k

PN�1
i¼1 i where N

is the number of assets.
bution for the six asset case is as shown in Eq. (12) where fn denotes
the marginals pdf and cn denotes the pairwise copula pdfs:

f123456 ¼ f1 � f2 � f3 � f4 � f5 � f6 � c12 � c13 � c14 � c15 � c16 � c23j1

� c24j1 � c25j1 � c26j1 � c34j12 � c35j12 � c36j12 � c45j123

� c46j123 � c56j1234 ð12Þ
3.1.3. Marginals modeling
We model the marginals using two alternative methods. First,

to establish a baseline, we assume that they adhere to a normal
distribution. However, assumptions of normality within the mar-
ginals can lead to the copula model capturing asymmetries within
the marginals. Thus, for further comparison between the standard
copula and the vine copula model, the marginal distributions are
also modeled using the univariate skewed Student t (Skew-T) setup
of Hansen (1994) with constant unconditional mean and variance:6

yi;t ¼ ci;t þ
ffiffiffiffiffiffi
hi;t

q
� zi;t ; for i ¼ 1; . . . ;n; ð13Þ

hi;t ¼ xi; ð14Þ
zi;t � skewed Student tðmi; kiÞ; ð15Þ

where the skewed Student t density is given by

gðzjm; kÞ ¼
bc 1þ 1

m�2
bzþa
1�k

� �2
� ��ðmþ1Þ=2

z < �a=b;

bc 1þ 1
m�2

bzþa
1þk

� �2
� ��ðmþ1Þ=2

z P �a=b:

8>><
>>:

ð16Þ

The constants a,b, and c are defined as

a ¼ 4kc
m� 2
m� 1

� �
; b2 ¼ 1þ 3k2 � a2; c ¼

C mþ1
2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðm� 2Þ

p
C m

2

� � ð17Þ

Using a skewed marginal distribution gives greater confidence
that any asymmetry found in the dependence structure truly re-
flects dependence and cannot be attributed to poor modeling of
portfolio selection process (Scott and Horvath, 1980; Kane, 1982; Peiro, 1999; Harvey
et al., 2010). In untabulated analysis, when we incorporate asymmetric volatility in
the marginals, using the GARCH-GJR model (Glosten et al., 1993), we find no
qualitative difference in results. Details (available from the authors upon request) are
suppressed to conserve space.
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the marginals. During bear markets we are likely to observe a high-
er incidence of large negative returns than of large positive returns
(of similar magnitude) in a booming market. Thus, we expect this
observation to be captured by a negative k (indicating a left-
skewed density).

3.1.4. Portfolio parameterization process
Given that the Clayton SC parameterizes lower tail dependence

with a single parameter, the order of the assets entering the portfo-
lio has no impact on the modeling process. In contrast, the hierarchi-
cal structure of the canonical vine copula means that the ordering is
important. Accordingly, we design the canonical vine structure by
placing assets that have the highest degree of linear correlation with
all the other assets in the sample window at the ‘root’ of the struc-
ture. This is achieved by calculating and summing the Pearson’s cor-
relations between all assets during the sample window. More
formally, we define the correlation metric in Eq. (18):

Hy ¼
XN

x¼1

hxy; where x; y 2 N ð18Þ

hxy is an N � N matrix of the Pearson’s correlation parameter of the
monthly returns between each pair of assets x and y that are both
part of our portfolio of N assets. Hy is a N � 1 matrix where each
element is the sum of the Pearson’s correlation parameter of y with
all other assets x. The largest value in Hy has the highest absolute
linear correlation with all other assets within the portfolio during
the sample window and is placed at the root of the hierarchical
structure of the canonical vine.

In our application of the model, we use maximum likelihood
estimation. Due to the large number of parameters that need to
be incorporated in our model, numerical maximization of the like-
lihood function is difficult and requires substantial computer
resources. For example, for each of the 450 out-of-sample time
periods, a portfolio of 12 assets modeled using the Clayton CVC
with univariate skewed Student t marginals requires an estimate
of 114 parameters.7 We use the inference for margins (IFM) (Joe,
1997) method that is a 2-step parametric estimation procedure
where the copula and marginal distribution parameters are esti-
mated separately.

3.2. Optimization of the investor’s utility function

Given that our focus is on lower tail dependence, it makes sense
to select an optimization strategy that has a meaningful downside
risk emphasis. Accordingly, we choose to minimize CVaR in prefer-
ence to Value-at-Risk (VaR), as the former metric is considered to
be a coherent risk measure (Uryasev, 2000). It is suitable for an
investor who is focused on minimizing downside risk and is indif-
ferent (or might even prefer) upside variance. Furthermore, it gen-
erates an efficient frontier that incorporates non-normality. Thus, if
asset returns exhibit lower tail dependence, more emphasis will be
placed on reducing this risk in comparison to MVPT portfolios that
assume quadratic utility and ignore all higher moments of the
returns distribution. Optimizing portfolios to reduce CVaR is a
linear programming exercise and leads to lower values of VaR.
Rockafellar and Uryasev (2000) present CVaR in integral form as
shown below:

/bðwÞ ¼
1

1� b

Z
f ðw;rÞPabðwÞ

f ðw; rÞpðrÞdr ð19Þ
7 For the 12 asset case, a Clayton CVC requires an estimate of 66 pair wise
correlation parameters. Each of the Skew-T marginal distributions require an estimate
of 4 parameters namely, the unconditional mean, unconditional variance, skewness,
and degrees of freedom.
where a loss function is presented by f(w, r) and the probability that
r occurs is p (r). In addition, they show that, when Monte Carlo inte-
gration is used, Eq. (20) is a suitable approximation to minimize
CVaR for a given level of return:

min
ðw;aÞ

Faðw;bÞ ¼ aþ 1
qð1� bÞ

Xq

k¼1

½�wT rk � a�þ ð20Þ

where

lðwÞ 6 �R; ð21Þ
wT 1 ¼ 1; ð22Þ

q represents the number of samples generated by Monte Carlo sim-
ulation, a represents VaR and 1 is a vector of ones. b represents the
threshold value usually set at 0.99 or 0.95 and rk is the kth vector of
simulated returns. The vector of portfolio weights, w, is extracted
from the optimization procedure to generate the portfolio that min-
imizes CVaR for a given R. As we consider the investor who is averse
to extreme downside losses, we set b to 0.99-analogous to an inves-
tor who wishes to minimize losses at the 1% level of CVaR, similar to
Basel (2004) requirements.
4. Results

We investigate the applicability of the different multivariate
probability models in the context of investors who wish to mini-
mize the event of extreme losses within their portfolio. First, we
perform an in-sample study to observe the efficient frontiers pro-
duced from a range of probability models and also from historical
data of index excess returns for portfolios of different sizes. We
perform this analysis to observe which probability model produces
an efficient frontier closest to that of historical returns. Second, we
perform a multi-period, long-term, out-of-sample study which
uses the probability models as returns forecasts and optimize our
portfolios to minimize CVaR. We use a wide range of statistical
and economic metrics, including VaR backtests, to assess the supe-
riority of each model in an out-of-sample portfolio management
context.

4.1. Efficient frontiers, E (R) vs. CVaR

Fig. 3 shows the efficient frontiers produced when we apply
simulated returns data generated from several multivariate proba-
bility models, and historical excess returns data, over the entire
sample period from June 1963 to December 2010 without con-
straining short-sales. Annual expected returns are plotted against
CVaR as a measure of risk. We use an in-sample analysis to inves-
tigate which multivariate probability model produces an efficient
frontier closest to that of the historical data of excess index returns.

The copulas used are (1) Clayton SC; (2) Clayton CVC; (3) Stu-
dent t; and (4) Gaussian. The marginals are either modeled as a
normal (Normal) or with unconditional mean and variance and
incorporating skewness and kurtosis using the model of Hansen
(1994) within the resulting error distribution (Skew-T). The
multivariate normal (MVN) model is included as a benchmark to
indicate the resulting efficient frontier based on the assumptions
of MVPT where the marginals are normal and the elliptical depen-
dence structure is defined by the covariance matrix.

For the 3-asset case, we find clustering of efficient frontiers lar-
gely based on whether the marginals are normal or Skew-T.
Models with normal marginals under-estimate risk relative to
the Skew-T. Furthermore, elliptical dependence models with nor-
mal marginals generate efficient frontiers that cluster together
(e.g., MVN, Student t Normal, Gaussian Normal) and tend to un-
der-estimate risk relative to the models incorporating asymmetries
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Fig. 3. Alternative efficient frontiers (annual E (R) vs. CVaR) This figure shows the annual expected returns against CVaR for portfolios of 3 and 12 assets. Nine alternative
strategies are implemented for each portfolio using the full sample from July 1963 to December 2010. Clayton SC and Clayton CVC models allow for asymmetric dependence.
Models that allow for elliptical dependence structures are the Gaussian, Student t copulas, and MVN models. The Skew-T model allows for asymmetries within the marginals
while the Normal model does not.
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either in the dependence structure or in the marginals. However,
when elliptical dependence structures are modeled with Skew-T
marginals (e.g., Student t Skew-T, Gaussian Skew-T), the efficient
frontier changes considerably. These findings are consistent with
the intuition that in the case of modeling small portfolios, model-
ing of the marginals will have a greater effect on the portfolio than
the dependence structure. When Skew-T marginals are used, only
asymmetries within the dependence structure need to be modeled
by the copula and in the case of a small portfolio, there are no sig-
nificant improvements to be gained by using the CVC. The efficient
frontier produced by using historical returns is closer to the models
that incorporate asymmetries within the marginals with the Skew-
T.

For the 12-asset case, models incorporating elliptical depen-
dence structures cluster together (e.g., MVN, Gaussian, Student t)
even though Skew-T marginals are used. Visibly different efficient
frontiers are present for the Clayton CVC and SC even when Skew-T
or normal marginals are used. Elliptical dependence structures
generally underestimate the level of risk compared to asymmetric
dependence structures. For elliptical dependence models, normal
marginals underestimate the level of risk relative to Skew-T mar-
ginals. In an opposing fashion, for asymmetric dependence models,
normal marginals produce efficient frontiers that overestimate the
level of risk relative to Skew-T marginals. As the mathematical
model that generates an efficient frontier closest to that produced
by historical returns data is the most suitable in a portfolio and risk
management context, this is indicative that the Clayton CVC model
with Skew-T marginals provides the closest fit in the 12-asset case.

Similar to modern portfolio theory for large portfolios, modeling
of asymmetry within the dependence structure has a much greater
impact on the efficient frontier than just incorporating it in the
modeling of the marginals. The diversification effect is visible as
the efficient frontier for 12 assets dominates each 3-asset counter-
part, irrespective of the model being used. The efficient frontiers
produced by historical returns for portfolios of 12 and 3 assets
are closest to models that allow for asymmetries in the depen-
dence structure and marginals. Therefore, from an in-sample
perspective, multivariate probability models that do not incorpo-
rate these asymmetries can produce less reliable forecasts.
4.2. Out-of-sample portfolio performance

We study the use of multivariate probability models incorporat-
ing asymmetries within the dependence structure or marginals in
portfolio asset returns forecasts. We then optimize our portfolios
to minimize CVaR. This out-of-sample analysis is performed in a
long-run, multi-period investor horizon from June 1973 to Decem-
ber 2010. We investigate the Clayton SC with normal marginals
(SC-N), Clayton CVC with normal marginals (CVC-N), Clayton SC
with Skew-T marginals (SC-S), and Clayton CVC with Skew-T
marginals (CVC-S). We explore their performance out-of-sample
in relation to each other and against the benchmark of the MVN
probability model. As the SC-N, CVC-N, SC-S, and CVC-S models
have in common the incorporation of returns asymmetry in some
form, we will refer to them collectively as asymmetric returns
(AR) models. As before, all portfolio strategies are not short-sales
constrained.
4.2.1. Descriptive statistics of portfolio strategies
Table 3 shows the descriptive statistics of the returns distribu-

tion for each of the five portfolio strategies-we report mean, stan-
dard deviation, skewness, kurtosis, minimum value, maximum
value and maximum drawdown. Maximum drawdown is the larg-
est peak-to-trough percentage drop in returns during the invest-
ment period. As the size of the portfolio increases, across all
portfolio strategies, the mean tends to improve (the one contrary
case is SC-N) and the standard deviation decreases. This supports



Table 3
Out-of-sample copula-based portfolio strategy descriptive statistics.

Metric Method Portfolio size, N

3 6 9 10 11 12

Mean SC-N 0.57 �0.01 0.20 0.14 0.04 0.29
CVC-N 0.35 0.23 0.49 0.36 0.26 0.42
SC-S 0.33 0.06 0.09 0.32 0.10 0.48
CVC-S 0.22 0.26 0.35 0.41 0.41 0.52
MVN 0.53 0.20 0.38 0.27 0.23 0.42

Std. dev. SC-N 0.090 0.079 0.068 0.067 0.063 0.061
CVC-N 0.085 0.066 0.068 0.063 0.059 0.055
SC-S 0.088 0.074 0.068 0.067 0.062 0.061
CVC-S 0.083 0.068 0.065 0.061 0.060 0.055
MVN 0.086 0.057 0.058 0.054 0.053 0.050

Skewness SC-N �0.30 1.55 0.86 0.93 0.86 1.42
CVC-N �0.49 �0.67 1.08 0.67 0.83 1.02
SC-S �0.31 �0.74 0.73 1.05 0.73 1.09
CVC-S �0.59 �0.75 0.76 1.11 1.52 1.20
MVN �0.34 �0.43 0.61 0.38 0.66 0.30

Kurtosis SC-N 8.62 27.34 11.77 12.67 13.63 17.51
CVC-N 7.17 5.55 13.48 12.13 17.12 15.32
SC-S 6.67 8.14 13.37 14.68 10.91 14.41
CVC-S 5.96 6.80 13.69 17.46 23.59 17.85
MVN 8.62 5.05 9.95 8.32 11.00 8.57

Min SC-N �47.55 �33.79 �22.29 �25.42 �23.78 �22.00
CVC-N �47.55 �26.54 �23.60 �23.22 �29.26 �21.03
SC-S �41.73 �37.74 �26.23 �27.46 �23.62 �24.49
CVC-S �41.53 �31.14 �28.79 �23.45 �22.71 �20.83
MVN �47.55 �22.41 �20.80 �18.48 �17.72 �17.74

Max SC-N 50.78 80.26 52.22 51.80 49.92 54.41
CVC-N 35.34 25.08 54.28 48.76 51.32 46.81
SC-S 41.99 34.08 55.32 55.00 45.93 52.27
CVC-S 31.17 31.46 53.94 54.74 59.33 50.05
MVN 42.68 21.84 41.64 36.77 41.05 35.23

Max. drawdown SC-N 94.15 98.30 94.37 94.24 93.47 77.78
CVC-N 91.15 96.61 88.49 91.25 90.65 75.05
SC-S 87.95 96.99 93.88 87.13 91.58 68.01
CVC-S 96.10 94.54 88.91 81.40 85.63 65.65
MVN 91.80 93.72 86.09 87.05 87.68 70.49

This table reports a statistical overview of the returns distributions generated by each portfolio strategy out-of-sample. The mean, minimum, maximum, and maximum
drawdown are presented as percentages. SC-N is the Clayton standard copula (SC) with normal marginals, CVC-N is the Clayton canonical vine copula (CVC) with normal
marginals, SC-S is the Clayton SC with Skew-T marginals, CVC-S is the Clayton CVC with Skew-T marginals and MVN is the multivariate normal model (benchmark case).

3092 R.K.Y. Low et al. / Journal of Banking & Finance 37 (2013) 3085–3099
the maxim that increasing the number of assets in an investment
portfolio achieves diversification benefits.

SC-N produces the highest mean when there are three assets.
The most advanced model, CVC-S, produces the highest mean for
6, 10, 11, and 12 assets, while CVC-N produces the highest mean
for the nine assets case. These results are indicative that models
that account for asymmetry in some way, outperform the bench-
mark model (MVN), in terms of a higher mean value. Notably,
the mean for SC-N under performs the MVN benchmark beyond
three assets, suggesting that the covariance matrix is able to cap-
ture the dependence model in a superior fashion. As the number
of assets within the portfolio increases, the SC parameter asymp-
totes towards zero and is unable to capture asymmetric depen-
dence sufficiently. The CVC models (CVC-N and CVC-S) are not
restricted in this fashion mathematically and produce higher
means than SC-N for portfolios of six assets and above. Similarly,
the SC-S produces higher means than the SC-N as the former cap-
tures asymmetries within the marginals whereas the SC-N does
not.

MVN exhibits the lowest standard deviation for portfolios com-
prising six assets and above. SC models exhibit higher standard
deviation than the CVC models for all portfolio sizes. However,
the higher standard deviations exhibited by the AR models could
be indicative of a larger upside variance that is desirable for loss-
averse investors. Therefore, we explore the performance of the
strategies in relation to a range of downside risk measures in Sec-
tion 4.2.2. For portfolios exceeding nine assets, CVC-S consistently
produces highly positively skewed returns-a desirable attribute,
especially given that (a) the constituent indices in our dataset lar-
gely exhibit negative skewness and (b) investors are likely to prefer
positively-skewed portfolios. In addition, CVC-S also exhibits the
lowest maximum drawdown for portfolios of 10 assets and above.
For any given portfolio size, a strategy that incorporates asymme-
try in some form exhibits returns with a much higher level of
skewness and kurtosis compared to the benchmark model
(MVN). Analysis of the minimum and maximum returns show that
the high levels of kurtosis are largely attributed to the exposure of
the SC and CVC to large maximum returns. Finally, we observe that
CVC-S produces the highest mean, skewness (second highest for
portfolio size 12) and lowest maximum drawdown for portfolios
of 10 assets and above.

4.2.2. Risk-adjusted performance
Table 4 reports a range of risk-adjusted measures used to assess

the out-of-sample performance of each portfolio management
strategy. The Sharpe ratio penalizes the entire standard deviation
of portfolio returns, whereas the Sortino ratio penalizes only
downside standard deviation. The Omega ratio is a practical mea-
sure that makes no assumptions regarding investor risk prefer-
ences or utility functions except that investors prefer more to



Table 4
Out-of-sample risk-adjusted performance of copula-based portfolio strategies.

Risk-adjusted metric Method Portfolio size, N

3 6 9 10 11 12

Sharpe ratio SC-N 0.064 �0.001 0.030 0.020 0.007 0.048
CVC-N 0.041 0.035 0.073 0.057 0.045 0.076
SC-S 0.037 0.008 0.014 0.048 0.016 0.079
CVC-S 0.027 0.038 0.054 0.067 0.068 0.094
MVN 0.061 0.035 0.066 0.050 0.043 0.084

Sortino ratio SC-N 0.091 �0.002 0.044 0.030 0.009 0.075
CVC-N 0.057 0.046 0.113 0.085 0.066 0.117
SC-S 0.052 0.010 0.019 0.073 0.023 0.123
CVC-S 0.037 0.051 0.080 0.101 0.103 0.146
MVN 0.088 0.048 0.100 0.074 0.064 0.124

Omega ratio SC-N 1.201 0.996 1.090 1.061 1.019 1.148
CVC-N 1.122 1.100 1.238 1.181 1.142 1.248
SC-S 1.109 1.023 1.040 1.154 1.046 1.248
CVC-S 1.076 1.115 1.166 1.211 1.223 1.306
MVN 1.194 1.099 1.202 1.148 1.127 1.254

MPPM SC-N �0.037 �0.075 �0.030 �0.037 �0.042 �0.007
CVC-N �0.054 �0.028 0.006 �0.003 �0.010 0.015
SC-S �0.060 �0.066 �0.044 �0.014 �0.034 0.014
CVC-S �0.064 �0.028 �0.008 0.006 0.007 0.027
MVN �0.034 �0.016 0.006 �0.002 �0.006 0.020

Mean/VaR 1% SC-N 2.31 �0.04 1.04 0.73 0.21 2.21
CVC-N 1.41 0.97 2.61 1.87 1.50 2.71
SC-S 1.29 0.21 0.46 1.74 0.62 3.24
CVC-S 0.86 1.05 1.83 2.54 2.25 3.81
MVN 2.25 1.20 2.57 2.02 1.74 3.23

Mean/CVaR 1% SC-N 1.63 �0.04 0.97 0.62 0.19 1.63
CVC-N 1.07 0.92 2.45 1.72 1.24 2.32
SC-S 0.99 0.18 0.40 1.48 0.51 2.70
CVC-S 0.70 0.97 1.64 2.15 1.99 3.04
MVN 1.52 1.00 2.13 1.66 1.43 2.68

This table reports a range of risk-adjusted measures for the portfolio management strategies out-of-sample. The Sharpe (Sortino) ratio is the ratio of mean excess return to the
total standard deviation (lower partial moment) of the portfolio. The Omega ratio is a probability weighted ratio of gains to losses relative to a threshold value of 0%. The
Manipulation Proof Performance Measure (MPPM) is a metric that is robust against portfolios with non-linear payoffs. Mean/VaR and Mean/CVaR capture portfolio per-
formance relative to extreme downside risk at the 1% level. SC-N is the Clayton standard copula (SC) with normal marginals, CVC-N is the Clayton canonical vine copula (CVC)
with normal marginals, SC-S is the Clayton SC with Skew-T marginals, CVC-S is the Clayton CVC with Skew-T marginals and MVN is the multivariate normal model
(benchmark case).
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less. The MPPM is a portfolio ranking metric developed by Goetz-
mann et al. (2007) for robustness against non-linear payoffs from
managed portfolios.8 The Mean/CVaR and Mean/VaR metrics mea-
sure portfolio performance relative to extreme downside risk expo-
sure at the 1% level. The best performing strategies exhibit the
highest values for each measure.

Across all portfolio sizes, at least one of the AR models outper-
form the MVN benchmark for the Sharpe, Sortino and Omega met-
rics. For the MPPM metric, this result holds true for portfolios of
nine assets and above. This is also generally the case for Mean/
VaR and Mean/CVaR except for a portfolio of six assets where
MVN produces the highest value. Thus, based on our analysis mod-
els incorporating return asymmetries in some form, outperform
the MVN benchmark.

Across the Sharpe, Sortino and Omega Ratios, it is observed that
as the portfolio increases in size, so does the level of complexity re-
quired in the model to produce the highest ranked outcome. For
portfolio sizes above three assets, the CVC model outperforms its
counterpart SC model across the Sharpe, Sortino and Omega ratios.
While SC-N excels in our smallest portfolio setting, it performs
very poorly across all metrics for portfolios of six assets and above.
This finding suggests that the Clayton SC is too simplistic and is un-
able to meaningfully capture asymmetric dependence CVC-S excels
8 Goetzmann et al. (2007) test seven alternative measures of portfolio performance
and assess their vulnerability to manipulation with a number of simple dynamic
strategies. As recommended by Goetzmann et al. (2007), we use a relative risk
aversion parameter of 3.
in large portfolios of 10 assets and above and performs poorly for
small portfolios of three assets. This contrast is potentially due to
the fact that there is little or no benefit to be gained by using a
complex model of the dependence structure and marginals for sim-
pler, smaller portfolios. In such cases, using advanced models in-
duces estimation error which swamps any benefits from the
modeling, resulting in poor portfolio decisions.

For the MPPM, Mean/VaR and Mean/CVaR metrics, CVC-S con-
sistently produces the highest ranked outcomes for portfolios of
10 assets and above. The latter two are indicative that this CVC
method is able to produce a higher return without a substantial in-
crease in downside exposure. At less than 10 assets, MVN produces
the highest ranked MPPM values but some of these values are neg-
ative due to non-linear payoffs.

Generally, these results support the view that increases in mod-
el complexity and parameterization for small portfolios have little
or even negative benefits due to noise-prone estimation. At 10 as-
sets and above, CVC-S consistently achieves the highest rank across
all portfolio metrics. As the number of assets within the portfolio
increases, the greater degree of parameterization in the modeling
process of CVC-S produces various out-of-sample benefits includ-
ing improved risk-adjusted returns and performance benefits ro-
bust against non-linear payoffs.
4.2.3. Portfolio re-balancing analysis
Our investigation re-calculates the desired target weights every

month and the portfolio is re-balanced accordingly. In such a mul-
ti-period setting, adjustments to portfolio weights are due to the



Table 5
Portfolio re-balancing analysis across out-of-sample copula-based portfolio strategies.

Metric Method Portfolio size, N

3 6 9 10 11 12

Variance SC-N 112.62 15.07 0.57 0.23 0.16 0.03
CVC-N 116.74 9.15 0.84 0.15 0.14 0.03
SC-S 108.25 8.33 0.66 0.18 0.10 0.04
CVC-S 107.50 16.58 0.71 0.17 0.12 0.04
MVN 113.12 10.55 1.49 0.23 0.23 0.07

Maximum positive adjustment SC-N 7.92 8.59 5.18 5.11 6.26 3.06
CVC-N 8.51 6.76 5.32 4.09 3.64 3.24
SC-S 7.93 8.14 5.30 4.74 4.00 3.39
CVC-S 7.09 6.56 5.29 4.28 4.23 3.48
MVN 7.92 6.35 6.04 3.28 4.05 3.03

Maximum negative adjustment SC-N �8.57 �7.17 �2.70 �2.18 �1.86 �0.86
CVC-N �9.24 �6.45 �2.74 �2.20 �1.70 �1.46
SC-S �8.49 �4.68 �2.59 �1.82 �1.89 �1.33
CVC-S �7.60 �6.40 �2.50 �1.87 �1.77 �1.50
MVN �8.57 �6.44 �5.06 �3.19 �3.12 �2.72

This table shows the variance, maximum positive, and maximum negative asset re-balancing adjustments for each portfolio strategy out-of-sample. SC-N is the Clayton
standard copula (SC) with normal marginals, CVC-N is the Clayton canonical vine copula (CVC) with normal marginals, SC-S is the Clayton SC with Skew-T marginals, CVC-S is
the Clayton CVC with Skew-T marginals and MVN is the multivariate normal model (benchmark case).
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volatility of out-of-sample asset returns and changes in investment
decisions. Since we use the same out-of-sample data for each port-
folio size, the adjustments to portfolio weights capture the varying
changes in investment decisions made by each portfolio strategy.
Large portfolio adjustments due to re-balancing is undesirable for
two reasons. First, they are difficult to implement and can under-
mine the feasibility of a portfolio strategy. Second, other things
equal, a superior strategy should require smaller adjustments to
asset weights rather than large volatile changes each period.

Table 5 shows the variance, maximum positive, and maximum
negative portfolio asset weight adjustments required to re-
balance to the desired target weight for each strategy. For exam-
ple, in portfolios of 11 assets, the CVC-S model produces a
maximum positive target weight adjustment of 4.23 (i.e., the
weight of one portfolio asset moves from �1.50 to 2.73) and a
maximum negative target weight adjustment of �1.77 (i.e., the
weight of one portfolio asset moves from 1.23 to �0.54). For port-
folios of 10 assets and above, CVC models generally exhibit lower
variance in weight adjustments compared to SC models. At nine
assets and above, the MVN benchmark has the highest variance
in portfolio weight adjustments. This higher variance is undesir-
able in practice and might lead to higher turnover. Also, the
magnitude of MVN’s negative portfolio weight adjustment is
much larger relative to the other strategies. This suggests that
MVN might require more downward adjustments than other
approaches. Finally, we observe that the degree of variance and
the maximum positive or negative adjustment in portfolio
weights required to execute each strategy tends to decrease as
the size of the portfolio increases.

4.2.4. Economic performance
Table 6 reports three alternative economic metrics across the

portfolio management strategies. Specifically, we model terminal
wealth by hypothetically investing $100 at the start of the out-
of-sample periods for each portfolio management strategy. To
gauge the feasibility of implementing each strategy, we also calcu-
late the average turnover requirement and the effect of transaction
costs on each portfolio. The average turnover is calculated as the
average sum of the absolute value of the trades across the N avail-
able assets following DeMiguel et al. (2009):

Average turnover ¼ 1
T �M

XT�M

t¼1

XN

j¼1

ðjwk;j;tþ1 �wk;j;tþ jÞ ð23Þ
where N is the total number of assets in the portfolio, T is total
length of the time series, M is the sample period used to parameter-
ize the forecast models, wk,j,t+1 is the desired target portfolio weight
for asset j at time t + 1 using strategy k and wk;j;tþ is the counterpart
portfolio weight before re-balancing. Similar to DeMiguel et al.
(2009), we apply proportional transaction costs of 1 basis point
per transaction (as assumed in Balduzzi and Lynch (1999) based
on studies of transaction costs by Fleming et al. (1995) for trades
on futures contracts on the S&P 500 index).

For portfolios of 10 assets and above, CVC-S produces the larg-
est terminal wealth-regardless of whether transaction costs are in-
cluded or not. Even though CVC-S’s re-balancing decisions require
higher turnover compared to the other strategies, the higher costs
are still outweighed by the greater economic benefits. SC-S is the
second best performing strategy irrespective of transaction costs
and exhibits much lower turnover requirements compared to
CVC-S. While SC-N performs well for small portfolios of three as-
sets, at six assets and above, it exhibits the lowest final portfolio
values and has the lowest turnover requirements in portfolios of
nine assets and above. For portfolios of 6 and above, CVC-N and
CVC-S outperform SC-N and SC-S, respectively. This shows that
the higher degree of parameterization of CVC models leads to per-
formance benefits above the simpler SC model for larger portfolios.
4.2.5. Value-at-Risk (VaR) backtests
Table 7 shows the performance of our portfolio management

strategies using a range of VaR backtests at the 1% level, similar
to Basel (2004) requirements. During each out-of-sample period,
a VaR violation is recorded when the portfolio strategy return is
less than the 1% VaR value of the total forecast return series for
all constituent assets within the portfolio (Christoffersen, 2012).
The Percentage of Failure Likelihood Ratio (PoFLR) and Conditional
Coverage Likelihood Ratio (CCLR) are test statistics designed by
Kupiec (1995) and Christoffersen (2012), respectively. The PoFLR
focuses on the property of unconditional coverage whereas the
CCLR incorporates both unconditional coverage and independence
testing. Intuitively, tests of unconditional coverage indicate the
magnitude of the difference between the actual and promised
percentage of VaR violations in a risk management model and
independence testing indicates the existence of serial VaR viola-
tions in a row. Large PoFLR and CCLR values are indicative that
the proposed risk or portfolio management strategy systematically
understates or overstates the portfolio’s underlying level of risk.



Table 7
Value-at-Risk (VaR) backtests across copula-based portfolio strategies.

VaR backtest metric Method Portfolio size, N

3 6 9 10 11 12

Percentage of failure likelihood ratio SC-N 42.22 45.70 15.37 15.37 12.98 5.04
(0.00) (0.00) (0.00) (0.00) (0.00) (0.02)

CVC-N 42.22 32.32 12.98 8.67 5.04 3.52
(0.00) (0.00) (0.00) (0.00) (0.02) (0.06)

SC-S 42.22 32.32 10.75 10.75 5.04 1.20
(0.00) (0.00) (0.00) (0.00) (0.02) (0.27)

CVC-S 38.82 20.54 5.04 3.52 2.23 0.46
(0.00) (0.00) (0.02) (0.06) (0.14) (0.50)

MVN 29.21 15.37 2.23 2.23 3.52 2.23
(0.00) (0.00) (0.14) (0.14) (0.06) (0.14)

Conditional coverage likelihood ratio SC-N 44.15 64.67 15.37 22.04 12.98 5.04
(0.00) (0.00) (0.00) (0.00) (0.00) (0.08)

CVC-N 46.58 51.91 13.56 13.14 5.04 10.32
(0.00) (0.00) (0.00) (0.00) (0.08) (0.01)

SC-S 46.58 35.41 10.75 10.75 5.04 1.20
(0.00) (0.00) (0.00) (0.00) (0.08) (0.55)

CVC-S 39.36 22.60 5.04 3.52 2.23 0.46
(0.00) (0.00) (0.08) (0.17) (0.33) (0.80)

MVN 32.77 22.04 10.05 10.05 10.32 10.05
(0.00) (0.00) (0.01) (0.01) (0.01) (0.01)

Traffic light classification SC-N Red Red Red Red Red Yellow
CVC-N Red Red Red Yellow Yellow Yellow
SC-S Red Red Red Red Yellow Yellow
CVC-S Red Red Yellow Yellow Yellow Green
MVN Red Red Yellow Yellow Yellow Yellow

This table reports VaR backtests performed at the 1% level. The Percentage of Failure Likelihood Ratio (Kupiec, 1995) measures only unconditional coverage. The conditional
coverage test (Christoffersen, 2012) is a simultaneous test of both the unconditional coverage and independence properties of VaR violations. The Traffic light approach is
taken from the Basel II regulatory framework where models are categorized as ‘Red’: unacceptable, ‘Yellow’: uncertain and ‘Green’: acceptable. SC-N is the Clayton standard
copula (SC) with normal marginals, CVC-N is the Clayton canonical vine copula (CVC) with normal marginals, SC-S is the Clayton SC with Skew-T marginals, CVC-S is the
Clayton CVC with Skew-T marginals and MVN is the multivariate normal model (benchmark case).

Table 6
Economic measures of out-of-sample performance of copula-based portfolio strategies.

Economic metric Method Portfolio size, N

3 6 9 10 11 12

Terminal wealth exc. transaction cost SC-N 199.18 24.03 90.08 67.52 49.51 167.96
CVC-N 86.36 101.54 336.93 210.54 151.43 338.45
SC-S 72.60 34.86 54.14 159.50 65.99 385.11
CVC-S 53.41 109.90 190.00 276.84 283.71 524.93
MVN 187.41 117.00 266.36 177.73 150.56 376.20

Average turnover SC-N 2.15 2.32 1.75 1.30 1.43 1.21
CVC-N 2.12 2.29 1.83 1.46 1.65 1.50
SC-S 2.47 2.43 2.20 1.55 1.61 1.32
CVC-S 2.43 2.65 2.26 1.86 1.75 1.65
MVN 1.62 1.87 1.87 1.58 1.77 1.61

Terminal wealth inc. transaction cost SC-N 180.77 21.65 83.26 63.67 46.43 159.06
CVC-N 78.50 91.60 310.26 197.12 140.62 316.36
SC-S 64.97 31.25 49.04 148.77 61.37 362.88
CVC-S 47.88 97.55 171.61 254.64 262.17 487.34
MVN 174.24 107.53 244.87 165.55 139.01 349.98

This table shows the hypothetical terminal wealth generated by each portfolio management strategy. Terminal wealth is modeled as the final portfolio value (either excluding
or including transaction costs) assuming an initial investment $100 at the start of the out-of-sample period for each strategy. The turnover required to implement each
strategy is also reported and can be interpreted as the average percentage of portfolio wealth traded in each period. The final portfolio value including transaction costs
assumes transaction costs of 1 bps per transaction. SC-N is the Clayton standard copula (SC) with normal marginals, CVC-N is the Clayton canonical vine copula (CVC) with
normal marginals, SC-S is the Clayton SC with Skew-T marginals, CVC-S is the Clayton CVC with Skew-T marginals and MVN is the multivariate normal model (benchmark
case).
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Therefore, a superior strategy results in a test statistic closest to
zero. Following Christoffersen (2012), we report the p-values for
these test statistics where the null hypothesis is that the portfo-
lio/risk management model is correct on average.

Generally, we find that CVC-S and MVN are the best performing
models across all portfolio sizes and that there is a large improve-
ment when there are nine assets or more. At 12 assets, CVC-S
shows a substantial performance improvement for PoFLR com-
pared to MVN. For portfolios less than 12 assets, the PoFLR test sta-
tistic indicates similar performance between CVC-S and MVN.
However, when we account for the independence property of
VaR backtests using CCLR, CVC-S exhibits superior performance
compared to MVN. We also observe that when the independence
property is accounted for in the testing, the performance of MVN



Fig. 4. Pattern of wealth accumulation for out-of-sample copula-based portfolio strategies. This figure shows the accumulation of wealth from an initial hypothetical
investment of $100 in each portfolio strategy at the start of the out-of-sample period for 3-asset and 12-asset portfolios. SC-N is the Clayton standard copula (SC) with normal
marginals, CVC-N is the Clayton canonical vine copula (CVC) with normal marginals, SC-S is the Clayton SC with Skew-T marginals, CVC-S is the Clayton CVC with Skew-T
marginals and MVN is the multivariate normal model (benchmark case).

9 Christoffersen (2012) recommends the use of a 10% significance level for practical
risk management purposes because Type II errors (i.e., a failure to reject an incorrect
model) can be very costly.
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deteriorates across all portfolio sizes. For each of the other portfo-
lio strategies that incorporate returns asymmetry in some form, we
do not always observe an increase in the CCLR test statistic. In fact,
for CVC-S, incorporation of independence testing has only a negli-
gible impact, particularly in portfolios above six assets. Therefore,
incorporation of return asymmetry in forecasting improves the
independence property as the likelihood of having a sequence of
VaR violations is reduced.
Based on a 10%9 significance level for the PoFLR test statistic,
CVC-S (MVN) is acceptable for portfolios of 11 and 12 assets (9, 10
and 12 assets). Based on the same statistic, SC-S is also acceptable
for portfolios of 12 assets. However, applying the same significance



1973 1977 1980 1984 1987 1990 1994 1997 2000 2004 2007 2010
-4

-2

2

4

6

8

10

Years

Sh
ar

pe
 R

at
io

CVC-S
MVN

1973 1977 1980 1984 1987 1990 1994 1997 2000 2004 2007 2010
-25

-20

-15

-10

-5

0

5

10

15

20

25

30

Years

An
nu

al
 c

um
ul

at
iv

e 
re

tu
rn

 (%
)

CVC-S
MVN

Fig. 5. Annual Sharpe ratio and cumulative return, out-of-sample, for CVC-S vs. MVN models This figure shows annual comparisons between the Sharpe ratio and annual
cumulative returns between the CVC-S and MVN models. CVC-S is the Clayton canonical vine copula (CVC) with Skew-T marginals and MVN is the multivariate normal model
(benchmark case).
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Fig. 6. Difference in end of year portfolio value, out-of-sample, for CVC-S vs. MVN models. This figure shows the difference in end of year portfolio values between CVC-S and
MVN annually. The end of year portfolio value of MVN is subtracted from CVC-S, based on a hypothetical investment of $100 in each strategy at the beginning of each year.
CVC-S is the Clayton canonical vine copula (CVC) with Skew-T marginals and MVN is the multivariate normal model (benchmark case).
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Table 8
Average annual out-of-sample performance differential between CVC-S vs. MVN
models.

Metric Whole Normal Crisis

Sharpe ratio 0.33 0.27 0.56
Sortino ratio 0.63 0.49 1.14
Portfolio value 1.59 0.91 4.11

This table shows the average annual differential between CVC-S and MVN (i.e., CVC-
S minus MVN) for the Sharpe ratio, Sortino ratio, and end-of-year portfolio values
generated annually by hypothetically investing $100 at the start of each year.
‘Whole’ denotes all years in the out-of-sample dataset from 1973 to 2010. ‘Crisis’
denotes the annual subperiods constituting the bottom quintile of US stock market
returns (i.e., the 8 worst performing years out of the entire 37 year out-of-sample
period) and ‘Normal’ denotes the remaining annual subperiods in the out-of-sample
dataset. CVC-S is the Clayton canonical vine copula (CVC) with Skew-T marginals
and MVN is the multivariate normal model (benchmark case).
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level to the CCLR statistic (notably a stricter test), CVC-S is an accept-
able model for portfolios of 10 assets and above, while MVN is now
rejected across all portfolio sizes. SC-S remains acceptable using the
CCLR test statistic for a portfolio of 12 assets.

As a third form of analysis we apply the ‘traffic light’ approach,
taken from Basel (2004) in which risk management models are
classified into three categories depending on the number of VaR
violations. For our scenario of 450 out-of-sample periods, models
with 13 or more VaR violations are within the ‘Red’ category. Mod-
els within the ‘Green’ category have less than 6 violations, those
within the ‘Yellow’ category have between 6 to 12 violations. We
find that all strategies perform poorly for portfolios of three and
six assets. However, CVC-S and MVN improve dramatically for
portfolio sizes of 9 and above. CVC-S is the only strategy that
achieves a ‘Green’ zone classification-for the 12-asset portfolio.

Generally, for portfolios of three and six assets, the multivariate
probability models do not perform well when VaR backtests are
considered. However, our results continue to support the view that
for portfolios of 10 assets and above, the CVC-S strategy improves
portfolio decisions as there is reduced frequency and increased
independence of VaR violations. This conclusion comes from the
CCLR and the Basel (2004) traffic light tests.
10 The 8 ‘Crisis’ years identified are 1974, 1975, 1979, 1981, 1982, 1987, 1990 and
2008.
4.2.6. Further analysis of time-series performance
Fig. 4 shows the accumulation of wealth for all the strategies

when the portfolio contains either three assets or 12 assets. In
Fig. 4a, analyzing portfolios of three assets, from 1973 to 1990,
the portfolio management strategies perform similarly. Beyond
1991, simple portfolio strategies such as SC-N and MVN start to
outperform the other models. MVN tends to outperform SC-N from
1993 onwards but experiences large losses in 2007. SC-N experi-
ences lower losses and is able to recover its portfolio value from
2008 to 2010 to outperform MVN. Based on this analysis, for small
portfolios the Clayton SC captures lower tail dependence ade-
quately and implementing the more complicated Clayton CVC is
unnecessary.

We see in Fig. 4b analyzing portfolios of 12 assets, from 1973 to
1987, all portfolio strategies perform similarly. From 1987 on-
wards, CVC-S begins to exhibit economic superiority by producing
returns above those of other models. From 1993 onwards, CVC-N
also begins to exhibit relative superiority over the other models
(except for CVC-S). This figure shows that controlling for lower tail
dependence using the Clayton CVC and asymmetries within the
marginals, the portfolio has the ability to insulate downside risk
and, to some extent, protect the value of the portfolio with little
loss to upside return. Within our dataset after 1987, all indices ex-
hibit high levels of negative skewness, whereas before 1987, about
half the indices exhibit positive skewness. Thus, the use of CVC-S
results in improved portfolio management when negative skew-
ness is prominent. SC-N performs poorly for large portfolios as
the single asymmetric dependence parameter in the Clayton SC
asymptotes towards zero due to the size of the portfolio. However,
as CVC-N captures asymmetries within the marginals it is less af-
fected by the dilution of the asymmetric dependence parameter
for large portfolios.

Fig. 5 shows the annual Sharpe ratios and cumulative annual re-
turns for each year out-of-sample, focusing on CVC-S and MVN for
portfolios of 12 assets. We can see that CVC-S often produces
Sharpe ratios and upside gains greater than that of MVN. Notably,
during the years 2000 onwards, compared to MVN, CVC-S mainly
produces larger or similar Sharpe ratios and annual cumulative
returns.

Fig. 6 shows the difference in (hypothetical) end of year portfo-
lio values between CVC-S and MVN (based on a hypothetical
investment of $100 in each strategy at the beginning of each year).
The difference in values at the end of each year is obtained by sub-
tracting the portfolio value of MVN from CVC-S. Generally, we can
see that CVC-S produces greater economic returns than MVN over
all. Moreover, a majority of years favor the CVC-S strategy and the
magnitude of the value difference tends to be higher in years when
CVC-S outperforms MVN.

Table 8 shows the average annual differential across three alter-
native portfolio metrics for CVC-S minus MVN for the ‘Whole’, ‘Cri-
sis’ and ‘Normal’ periods within the out-of-sample study. The
‘Whole’ period denotes the entire out-of-sample period, 1973 to
2010. The ‘Crisis’ years are identified as the bottom quintile of US
market index monthly returns-that is, the 8 years that exhibit
the largest frequency of the worst performing months.10 The ‘Nor-
mal’ period consists of the remaining 29 years.

Across the entire out-of-sample period, on an average annual
basis, CVC-S outperforms MVN by 0.33 when applying the Sharpe
Ratio. Given a focus on downside risk, the Sortino Ratio indicates
that CVC-S delivers a substantial performance advantage over
MVN: the differential is 0.63. To complete the overall comparison,
on average, CVC-S results in a higher dollar value of $1.59 per year
based on hypothetically investing $100 at the start of each year.

Asymmetric dependence or excessive downside correlation
across equity returns is more prevalent during bear markets or
‘Crisis’ periods. Thus intuitively, during such periods a strategy that
explicitly manages asymmetric dependence should exhibit supe-
rior performance compared to strategies that do not. Interestingly,
while we find that CVC-S exhibits superior performance during
both ‘Crisis’ and ‘Normal’ periods the superiority is greater during
the ‘Crisis’ period. Specifically, during this part of our sample the
Sharpe Ratio of CVC-S is larger than MVN by a magnitude of
0.56, compared to 0.27 during the ‘Normal’ period. This effect is
even more pronounced when we focus on downside risk: the dif-
ference in the Sortino Ratio is 1.14 in favor of the copula-based
strategy during ‘Crisis’ years and this differential is more than
twice the value observed during ‘Normal’ years. Finally, when we
focus on the average end-of-year portfolio value differences,
CVC-S has a higher value of $4.11 during the ‘Crisis’ period com-
pared to a smaller superiority of $0.91 during ‘Normal’ years (rela-
tive to $100 hypothetical investments occurring at the beginning of
each year).

These results show further evidence that CVC-S, the strategy
that incorporates asymmetric dependence using the Clayton CVC
and skewness within the marginals, is able to produce superior
forecasts of equity returns compared to competing models, leading
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to improved portfolio allocation decisions and enhanced
performance.

5. Conclusion

In this study, we investigate whether using asymmetric copula
models to forecast returns for portfolios ranging from 3 to 12 as-
sets can produce superior investment performance compared to
traditional models. We examine the efficient frontiers produced
by each model and focus on comparing two methods for incorpo-
rating scalable asymmetric dependence structures across asset re-
turns using the Archimedean Clayton copula in an out-of-sample,
long-run multi-period investment. As traditional Mean–Variance
Portfolio Theory (MVPT) does not account for asymmetry in re-
turns distributions, it is quite plausible that there is a need for
more advanced portfolio management strategies that incorporate
asymmetries within the forecasting process and during the optimi-
zation of the investor’s utility function.

We find evidence that for portfolios of 10 assets and above, the
Clayton CVC outperforms the Clayton standard copula (SC) across a
broad range of metrics over a long-run, multi-period horizon. The
most advanced model we implement, in which asymmetries with-
in the dependence structure and marginals are modeled using the
Clayton CVC and skewed Student t of Hansen (1994) (CVC-S), con-
sistently produces statistical and economically significant gains
superior to the other models tested, including the multivariate nor-
mal (MVN) model. Despite the strategy having high turnover
requirements, even when transaction costs are incorporated, there
are greater economic benefits relative to the other strategies. CVC-
S also exhibits the best performance when a series of Value-at-Risk
(VaR) backtests are applied to larger portfolios. Furthermore, it is
able to consistently generate strong positively skewed returns for
larger portfolios-a portfolio characteristic that is highly attractive
to most rational investors. While the superiority of the CVC-S strat-
egy over the traditional symmetric MVPT approach is generally
seen across our sample, it is strongest during ‘Crisis’ years. This
finding suggests that the CVC-S approach successfully manages
asymmetric dependence compared to the other models tested.

In addition, our analysis shows that as the number of assets in-
creases within the portfolio, modeling of the dependence structure
across the assets has a greater impact. For smaller portfolios, mod-
eling the asymmetry within the marginals themselves plays a more
crucial role. The Clayton CVC produces superior statistical and eco-
nomic outcomes compared to the Clayton SC for portfolios of six
assets and above. Accordingly, we conclude that CVC copulas are
‘worth it’ when managing portfolios of high dimensions due to
their ability to better capture asymmetries within the dependence
structure than either the SC copula or multivariate normality
models.

References

Aas, K., Czado, C., Frigessi, A., Bakken, H., 2009. Pair-copula constructions of multiple
dependence. Insurance: Mathematics and Economics 44 (2), 182–198.

Aggarwal, R., Aggarwal, R., 1993. Security return distributions and market structure:
evidence from the NYSE/AMEX and the NASDAQ markets. Journal of Financial
Research 16 (3), 209–220.

Ané, T., Kharoubi, C., 2003. Dependence structure and risk measure. Journal of
Business 76 (3), 411–438.

Ang, A., Chen, J., 2002. Asymmetric correlations of equity portfolios. Journal of
Financial Economics 63 (3), 443–494.

Ang, A., Chen, J., Xing, Y., 2006. Downside risk. Review of Financial Studies 19 (4),
1191–1239.

Arditti, F.D., 1967. Risk and the required return on equity. Journal of Finance 22 (1),
19–36.
Ba, C., 2011. Recovering copulas from limited information and an application to
asset allocation. Journal of Banking & Finance 35 (7), 1824–1842.

Balduzzi, P., Lynch, A.W., 1999. Transaction costs and predictability: some utility
cost calculations. Journal of Financial Economics 52 (1), 47–78.

Barberis, N., 2000. Investing for the long run when returns are predictable. Journal
of Finance 55 (1), 225–264.

Basel, I.I., 2004. International convergence of capital measurement and capital
standards. Basel Committee on Banking Supervision, June 2006.

Cherubini, U., Luciano, E., Vecchiato, W., Cherubini, G., 2004. Copula methods in
finance. John Wiley & Sons, Chichester.

Christoffersen, P., 2012. Elements of financial risk management, 2nd ed. Academic
Press.

Chua, D.B., Kritzman, M., Page, S., 2009. The myth of diversification. Journal of
Portfolio Management 36 (1), 26–35.

Cromwell, N.O., Taylor, W.R.L., Yoder, J.A., 2000. Diversification across mutual funds
in a three-moment world. Applied Economics Letters 7 (4), 243–245.

DeMiguel, V., Garlappi, L., Uppal, R., 2009. Optimal versus naive diversification: how
inefficient is the 1/N portfolio strategy? Review of Financial Studies 22 (5),
1915–1953.

Fleming, J., Ostdiek, B., Whaley, R., 1995. Predicting stock market volatility: a new
measure. Journal of Futures Markets 3 (15), 265–302.

Garcia, R., Tsafack, G., 2011. Dependence structure and extreme comovements in
international equity and bond markets. Journal of Banking & Finance 35 (8),
1954–1970.

Glosten, L.R., Jagannathan, R., Runkle, D.E., 1993. On the relation between the
expected value and the volatility of the nominal excess return on stocks. Journal
of Finance 48 (5), 1779–1801.

Goetzmann, W., Goetzmann, J., Ingersoll, J., Welch, I., 2007. Portfolio performance
manipulation and manipulation-proof performance measures. Review of
Financial Studies 20 (5), 1503–1546.

Hansen, B.E., 1994. Autoregressive conditional density estimation. International
Economic Review 35 (3), 705–730.

Harvey, C.R., Liechty, J.C., Liechty, M.W., Müller, P., 2010. Portfolio selection with
higher moments. Quantitative Finance 10 (5), 469–485.

Harvey, C.R., Siddique, A., 2000. Conditional skewness in asset pricing tests. Journal
of Finance 55 (3), 1263–1295.

Hatherley, A., Alcock, J., 2007. Portfolio construction incorporating asymmetric
dependence structures: a user’s guide. Accounting and Finance 47 (3), 447–472.

Ingersoll, J.E., 1987. Theory of financial decision making. Rowman & Littlefield Pub
Inc.

Joe, H., 1997. Multivariate models and dependence concepts. Chapman & Hall.
Kane, A., 1982. Skewness preference and portfolio choice. Journal of Financial and

Quantitative Analysis 17 (1), 15–25.
Kritzman, M., Page, S., Turkington, D., 2010. In defense of optimization: the fallacy

of 1/N. Financial Analysts Journal 66 (2), 1–9.
Kupiec, P., 1995. Techniques for verifying the accuracy of risk measurement models.

Journal of Derivatives 3, 73–84.
Kurowicka, D., Joe, H., 2011. Dependence Modelling: Vine Copula Handbook. World

Scientific Publishing Company, London.
Longin, F., Solnik, B., 1995. Is the correlation in international equity returns

constant: 1960–1990? Journal of International Money and Finance 14 (1), 3–
26.

Longin, F., Solnik, B., 2001. Extreme correlation of international equity markets.
Journal of Finance 56 (2), 649–676.

Markowitz, H., 1952. Portfolio selection. Journal of Finance 7 (1), 77–91.
Merton, R.C., 1971. Optimum consumption and portfolio rules in a continuous-time

model. Journal of Economic Theory 3 (3), 373–413.
Nelsen, R.B., 2006. An introduction to copulas. Springer Verlag.
Patton, A.J., 2004. On the out-of-sample importance of skewness and asymmetric

dependence for asset allocation. Journal of Financial Econometrics 2 (1), 130–
168.

Patton, A.J., 2009. Copula based models for financial time series. In: Handbook of
Financial Time Series, pp. 767–785.

Peiro, A., 1999. Skewness in financial returns. Journal of Banking & Finance 23 (6),
847–862.

Rockafellar, R.T., Uryasev, S., 2000. Optimization of conditional value-at-risk.
Journal of Risk 2, 493–517.

Scott, R.C., Horvath, P.A., 1980. On the direction of preference for moments of higher
order than the variance. Journal of Finance 35 (4), 915–919.

Simkowitz, M.A., Beedles, W.L., 1978. Diversification in a three-moment world.
Journal of Financial and Quantitative Analysis 13 (05), 927–941.

Sklar, A., 1973. Random variables: joint distribution functions and copulas.
Kybernetika.

Stock, J.H., Watson, M.W., 1999. Forecasting inflation. National Bureau of Economic
Research Cambridge, Mass., USA.

Swanson, N., White, H., 1997. A model selection approach to real-time
macroeconomic forecasting using linear models and artificial neural
networks. Review of Economics and Statistics 79 (4), 540–550.

Uryasev, S., 2000. Conditional value-at-risk: optimization algorithms and
applications. Financial Engineering News 2 (3).


	Canonical vine copulas in the context of modern portfolio management: Are they worth it?
	1 Introduction
	2 Data
	3 Research method
	3.1 Multivariate probability modeling
	3.1.1 Clayton Archimedean copula
	3.1.2 Canonical vine copula
	3.1.3 Marginals modeling
	3.1.4 Portfolio parameterization process

	3.2 Optimization of the investor’s utility function

	4 Results
	4.1 Efficient frontiers, E (R) vs. CVaR
	4.2 Out-of-sample portfolio performance
	4.2.1 Descriptive statistics of portfolio strategies
	4.2.2 Risk-adjusted performance
	4.2.3 Portfolio re-balancing analysis
	4.2.4 Economic performance
	4.2.5 Value-at-Risk (VaR) backtests
	4.2.6 Further analysis of time-series performance


	5 Conclusion
	References


